Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Chem ; 60(7): 719-729, 2022 07.
Article in English | MEDLINE | ID: mdl-35246874

ABSTRACT

Numerous predictive microbiology models have been proposed to describe bacterial population behaviors in foodstuffs. These models depict the growth kinetics of particular bacterial strains based on key physico-chemical parameters of food matrices and their storage temperature. In this context, there is a prominent issue to accurately characterize these parameters, notably pH, water activity (aw ), and NaCl and organic acid concentrations. Usually, all these product features are determined using one destructive analysis per parameter at macroscale (>5 g). Such approach prevents an overall view of these characteristics on a single sample. Besides, it does not take into account the intra-product microlocal variability of these parameters within foods. Nuclear magnetic resonance (NMR) is a versatile non-invasive spectroscopic technique. Experiments can be recorded successively on a same collected sample without damaging it. In this work, we designed a dedicated NMR approach to characterize the microenvironment of foods using 10-mg samples. The multiparametric mesoscopic-scale approach was validated on four food matrices: a smear soft cheese, cooked peeled shrimps, cold-smoked salmon, and smoked ham. Its implementation in situ on salmon fillets enabled to observe the intra-product heterogeneity and to highlight the impact of process on the spatial distribution of pH, NaCl, and organic acids. This analytical development and its successful application can help address the shortcomings of monoparametric methods traditionally used for predictive microbiology purposes.


Subject(s)
Food Preservation , Listeria monocytogenes , Colony Count, Microbial , Food Microbiology , Food Preservation/methods , Magnetic Resonance Spectroscopy , Sodium Chloride
2.
Genome Announc ; 5(23)2017 Jun 08.
Article in English | MEDLINE | ID: mdl-28596408

ABSTRACT

In this study, we present a draft genome sequence of Serratia proteamaculans MFPA44A14-05. This strain was isolated from a spoiled organic modified-atmosphere-packed beef carpaccio. The draft genome sequence will contribute to the understanding of the role of the S. proteamaculans species in meat and seafood spoilage.

3.
Appl Environ Microbiol ; 82(13): 3928-3939, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27107120

ABSTRACT

UNLABELLED: Raw sausages are perishable foodstuffs; reducing their salt content raises questions about a possible increased spoilage of these products. In this study, we evaluated the influence of salt reduction (from 2.0% to 1.5% [wt/wt]), in combination with two types of packaging (modified atmosphere [50% mix of CO2-N2] and vacuum packaging), on the onset of spoilage and on the diversity of spoilage-associated bacteria. After 21 days of storage at 8°C, spoilage was easily observed, characterized by noticeable graying of the products and the production of gas and off-odors defined as rancid, sulfurous, or sour. At least one of these types of spoilage occurred in each sample, and the global spoilage intensity was more pronounced in samples stored under modified atmosphere than under vacuum packaging and in samples with the lower salt content. Metagenetic 16S rRNA pyrosequencing revealed that vacuum-packaged samples contained a higher total bacterial richness (n = 69 operational taxonomic units [OTUs]) than samples under the other packaging condition (n = 46 OTUs). The core community was composed of 6 OTUs (Lactobacillus sakei, Lactococcus piscium, Carnobacterium divergens, Carnobacterium maltaromaticum, Serratia proteamaculans, and Brochothrix thermosphacta), whereas 13 OTUs taxonomically assigned to the Enterobacteriaceae, Enterococcaceae, and Leuconostocaceae families comprised a less-abundant subpopulation. This subdominant community was significantly more abundant when 2.0% salt and vacuum packaging were used, and this correlated with a lower degree of spoilage. Our results demonstrate that salt reduction, particularly when it is combined with CO2-enriched packaging, promotes faster spoilage of raw sausages by lowering the overall bacterial diversity (both richness and evenness). IMPORTANCE: Our study takes place in the context of raw meat product manufacturing and is linked to a requirement for salt reduction. Health guidelines are calling for a reduction in dietary salt intake. However, salt has been used for a very long time as a hurdle technology, and salt reduction in meat products raises the question of spoilage and waste of food. The study was conceived to assess the role of sodium chloride reduction in meat products, both at the level of spoilage development and at the level of bacterial diversity, using 16S rRNA amplicon sequencing and raw pork sausage as a meat model.


Subject(s)
Bacteria/classification , Bacteria/drug effects , Biota/drug effects , Food Preservation , Red Meat/microbiology , Sodium Chloride , Bacteria/genetics , Bacteria/growth & development , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...