Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 14498, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29101377

ABSTRACT

Loss of synapses or alteration of synaptic activity is associated with cognitive impairment observed in a number of psychiatric and neurological disorders, such as schizophrenia and Alzheimer's disease. Therefore successful development of in vitro methods that can investigate synaptic function in a high-throughput format could be highly impactful for neuroscience drug discovery. We present here the development, characterisation and validation of a novel high-throughput in vitro model for assessing neuronal function and synaptic transmission in primary rodent neurons. The novelty of our approach resides in the combination of the electrical field stimulation (EFS) with data acquisition in spatially separated areas of an interconnected neuronal network. We integrated our methodology with state of the art drug discovery instrumentation (FLIPR Tetra) and used selective tool compounds to perform a systematic pharmacological validation of the model. We investigated pharmacological modulators targeting pre- and post-synaptic receptors (AMPA, NMDA, GABA-A, mGluR2/3 receptors and Nav, Cav voltage-gated ion channels) and demonstrated the ability of our model to discriminate and measure synaptic transmission in cultured neuronal networks. Application of the model described here as an unbiased phenotypic screening approach will help with our long term goals of discovering novel therapeutic strategies for treating neurological disorders.


Subject(s)
Drug Discovery/instrumentation , Neurons/physiology , Synapses/physiology , Synaptic Transmission/physiology , Voltage-Sensitive Dye Imaging , Animals , Calcium/metabolism , Cations, Divalent/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Electric Stimulation , Neurons/cytology , Neurons/drug effects , Neurotransmitter Agents/pharmacology , Primary Cell Culture , Rats, Sprague-Dawley , Synapses/drug effects , Synaptic Transmission/drug effects , Voltage-Sensitive Dye Imaging/instrumentation , Voltage-Sensitive Dye Imaging/methods
2.
Mol Pain ; 13: 1744806917745179, 2017.
Article in English | MEDLINE | ID: mdl-29166836

ABSTRACT

Background The Nav1.7 subtype of voltage-gated sodium channels is specifically expressed in sensory and sympathetic ganglia neurons where it plays an important role in the generation and transmission of information related to pain sensation. Human loss or gain-of-function mutations in the gene encoding Nav1.7 channels (SCN9A) are associated with either absence of pain, as reported for congenital insensitivity to pain, or with exacerbation of pain, as reported for primary erythromelalgia and paroxysmal extreme pain disorder. Based on this important human genetic evidence, numerous drug discovery efforts are ongoing in search for Nav1.7 blockers as a novel therapeutic strategy to treat pain conditions. Results We are reporting here a novel approach to study Nav1.7 function in cultured rat sensory neurons. We used live cell imaging combined with electrical field stimulation to evoke and record action potential-driven calcium transients in the neurons. We have shown that the tarantula venom peptide Protoxin-II, a known Nav1.7 subtype selective blocker, inhibited electrical field stimulation-evoked calcium responses in dorsal root ganglia neurons with an IC50 of 72 nM, while it had no activity in embryonic hippocampal neurons. The results obtained in the live cell imaging assay were supported by patch-clamp studies as well as by quantitative PCR and Western blotting experiments that confirmed the presence of Nav1.7 mRNA and protein in dorsal root ganglia but not in embryonic hippocampal neurons. Conclusions The findings presented here point to a selective effect of Protoxin-II in sensory neurons and helped to validate a new method for investigating and comparing Nav1.7 pharmacology in sensory versus central nervous system neurons. This will help in the characterisation of the selectivity of novel Nav1.7 modulators using native ion channels and will provide the basis for the development of higher throughput models for enabling pain-relevant phenotypic screening.


Subject(s)
Electric Stimulation/methods , Ganglia, Spinal/metabolism , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Sensory Receptor Cells/metabolism , Animals , Calcium/metabolism , Ganglia, Spinal/drug effects , Hippocampus/metabolism , Male , Rats, Sprague-Dawley , Sensory Receptor Cells/drug effects , Sodium Channel Blockers/pharmacology
3.
PLoS One ; 10(4): e0125116, 2015.
Article in English | MEDLINE | ID: mdl-25906356

ABSTRACT

Neurons derived from human induced pluripotent stem cells (iPSCs) represent a potentially valuable tool for the characterisation of neuronal receptors and ion channels. Previous studies on iPSC-derived neuronal cells have reported the functional characterisation of a variety of receptors and ion channels, including glutamate receptors, γ-aminobutyric acid (GABA) receptors and several voltage-gated ion channels. In the present study we have examined the expression and functional properties of nicotinic acetylcholine receptors (nAChRs) in human iPSC-derived neurons. Gene expression analysis indicated the presence of transcripts encoding several nAChR subunits, with highest levels detected for α3-α7, ß1, ß2 and ß4 subunits (encoded by CHRNA3-CHRNA7, CHRNB1, CHRNB2 and CHRNB4 genes). In addition, similarly high transcript levels were detected for the truncated dupα7 subunit transcript, encoded by the partially duplicated gene CHRFAM7A, which has been associated with psychiatric disorders such as schizophrenia. The functional properties of these nAChRs have been examined by calcium fluorescence and by patch-clamp recordings. The data obtained suggest that the majority of functional nAChRs expressed in these cells have pharmacological properties typical of α7 receptors. Large responses were induced by a selective α7 agonist (compound B), in the presence of the α7-selective positive allosteric modulator (PAM) PNU-120596, which were blocked by the α7-selective antagonist methyllycaconitine (MLA). In addition, a small proportion of the neurons express nAChRs with properties typical of heteromeric (non-α7 containing) nAChR subtypes. These cells therefore represent a great tool to advance our understanding of the properties of native human nAChRs, α7 in particular.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Neurons/cytology , Receptors, Nicotinic/genetics , Aconitine/analogs & derivatives , Aconitine/pharmacology , Cells, Cultured , Gene Expression Regulation/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Isoxazoles/pharmacology , Neurons/metabolism , Phenylurea Compounds/pharmacology , Single-Cell Analysis
4.
Psychopharmacology (Berl) ; 231(6): 1105-24, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24429870

ABSTRACT

INTRODUCTION: Genetic causes, or predisposition, are increasingly accepted to be part of the ethiopathogenesis of many neuropsychiatric diseases. While genes can be studied in any type of cells, their physiological function in human brain cells is difficult to evaluate, particularly in living subjects. METHODS: As a first step towards the characterisation of human inducible pluripotent stem cell (iPSC)-derived neurons from autism spectrum disorder (ASD) patients, we used gene expression and functional studies to define the regional identity of the typical forebrain differentiation, demonstrate expression patterns of genes of interest in ASD and understand the properties of 'control' iPSC-derived neurons (iCell-Neurons™), with a focus on receptors and ion channels that play a central role in synaptic physio-pathology. RESULTS AND DISCUSSION: The gene expression profile of the iCell-Neurons™ closely resembled that observed in neonatal prefrontal cortex tissues. Functional studies, performed mainly using calcium flux assays, demonstrated the presence of ionotropic glutamate (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate) and gamma-aminobutyric acid type A receptors. Voltage-gated sodium and calcium channels were also identified using similar techniques. CONCLUSIONS: Overall, the results reported here suggest that iCell-Neurons™ are a good cellular model of a relatively immature forebrain human neuron population that can be used both as a control in comparison to patients cells, and as host cells in which mutations, insertions and deletions can be used in order to study the molecular mechanisms of ASD and other neurological disorders in an isogenic cellular background.


Subject(s)
Induced Pluripotent Stem Cells/physiology , Ion Channels/metabolism , Neurons/physiology , Prosencephalon/physiology , Calcium/metabolism , Calcium Channels/metabolism , Gene Expression , Humans , Induced Pluripotent Stem Cells/drug effects , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neurons/drug effects , Prosencephalon/drug effects , RNA, Messenger/metabolism , Receptors, GABA/metabolism , Receptors, GABA-A/metabolism , Receptors, Ionotropic Glutamate/agonists , Receptors, Ionotropic Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Time Factors , Voltage-Gated Sodium Channels/metabolism
5.
Autophagy ; 8(6): 915-26, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22660271

ABSTRACT

Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases but its relationship and role in disease progression remain unclear. Using genetic and pharmacological approaches, we showed that mild ER stress ("preconditioning") is neuroprotective in Drosophila and mouse models of Parkinson disease. In addition, we found that the combination of mild ER stress and apoptotic signals triggers an autophagic response both in vivo and in vitro. We showed that when autophagy is impaired, ER-mediated protection is lost. We further demonstrated that autophagy inhibits caspase activation and apoptosis. Based on our findings, we conclude that autophagy is required for the neuroprotection mediated by mild ER stress, and therefore ER preconditioning has potential therapeutic value for the treatment of neurodegenerative diseases.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Neurons/pathology , Animals , Autophagy/drug effects , Cytoprotection/drug effects , Disease Models, Animal , Drosophila melanogaster/metabolism , Endoplasmic Reticulum Stress/drug effects , Mice , Neurons/drug effects , Neuroprotective Agents/pharmacology , Oxidopamine , Parkinson Disease/pathology , Tunicamycin/pharmacology
6.
EMBO J ; 28(9): 1296-307, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19339992

ABSTRACT

The unfolded protein response (UPR) is a specific cellular process that allows the cell to cope with the overload of unfolded/misfolded proteins in the endoplasmic reticulum (ER). ER stress is commonly associated with degenerative pathologies, but its role in disease progression is still a matter for debate. Here, we found that mutations in the ER-resident chaperone, neither inactivation nor afterpotential A (NinaA), lead to mild ER stress, protecting photoreceptor neurons from various death stimuli in adult Drosophila. In addition, Drosophila S2 cultured cells, when pre-exposed to mild ER stress, are protected from H(2)O(2), cycloheximide- or ultraviolet-induced cell death. We show that a specific ER-mediated signal promotes antioxidant defences and inhibits caspase-dependent cell death. We propose that an immediate consequence of the UPR not only limits the accumulation of misfolded proteins but also protects tissues from harmful exogenous stresses.


Subject(s)
Drosophila melanogaster/physiology , Endoplasmic Reticulum/physiology , Retinal Degeneration/metabolism , Stress, Physiological/physiology , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Line , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Drosophila melanogaster/cytology , Drosophila melanogaster/drug effects , Endoplasmic Reticulum/metabolism , Hydrogen Peroxide/pharmacology , Membrane Proteins/genetics , Membrane Proteins/physiology , Molecular Chaperones/genetics , Molecular Chaperones/physiology , Mutation , Photoreceptor Cells/cytology , Photoreceptor Cells/drug effects , Photoreceptor Cells/metabolism , Retina/cytology , Retina/drug effects , Retina/metabolism , Retinal Degeneration/genetics , Reverse Transcriptase Polymerase Chain Reaction , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...