Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 1): 126307, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37573921

ABSTRACT

This article aims to quantify and differentiate in-situ iron(II) and/or iron(III) in heterogeneous polygalacturonate hydrogels using the 1H-NMR relaxometry technique. This holds significant importance, for example, in addressing iron-deficiency anemia through the oral administration of iron(II) supplements. The NMR dispersion profiles of the gels exhibited markedly distinct relaxation behaviors corresponding to the different iron oxidation states. At 20 MHz, two primary relaxation mechanisms must be considered: relaxation arising from water molecules confined within the polygalacturonate fiber mesh and paramagnetic relaxation due to iron cations. When iron(III) serves as the cross-linking agent, paramagnetic interaction dominates the relaxation, while with iron(II) as the cross-linker, both mechanisms have to be considered. To distinguish labile from structuring iron, we monitored the evolution of iron concentrations within the gels during successive washes using NMR and atomic absorption spectroscopy. Eventually, a gel containing both iron(II) and iron(III) was analyzed, and successful differentiation between the two cations was achieved. NMR relaxometry demonstrates powerful capabilities in terms of in-situ experiments, rapid results, speciation (iron(II)/iron(III)), and quantification (labile/ bridging iron).


Subject(s)
Hydrogels , Iron , Iron/chemistry , Magnetic Resonance Spectroscopy , Ferrous Compounds , Cations
2.
Carbohydr Polym ; 298: 120093, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36241321

ABSTRACT

Diffusions in gels are of prime importance, but their measurements are mainly focused on the diffusion in the pores or through the mesh of the gels. In this study, we performed a deeper dynamic analysis of the water in close interaction with the fibers structuring two heterogeneous polygalacturonate (polyGalA) hydrogels formed by Ca and Zn ions (crosslinking agents). Nuclear magnetic resonance dispersion (NMRD) profiles recorded in-situ by fast-field cycling relaxometry allow to observe the very slow dynamics of water within the gels. Two distinct interpretations of the NMRD profiles are discussed, the first in regard of rotational and translational dynamics in the fibers and the second with respect to a Levy-walk on the fibers' surface. These discussions are confronted with molecular dynamics simulations on a model Ca-polyGalA fiber.


Subject(s)
Molecular Dynamics Simulation , Water , Hydrogels , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...