Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 183(11): 3417-27, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11344150

ABSTRACT

Arylamine N-acetyltransferase activity has been described in various bacterial species. Bacterial N-acetyltransferases, including those from bacteria of the gut flora, may be involved in the metabolism of xenobiotics, thereby exerting physiopathological effects. We characterized these enzymes further by steady-state kinetics, time-dependent inhibition, and DNA hybridization in 40 species, mostly from the human intestinal microflora. We report for the first time N-acetyltransferase activity in 11 species of Proteobacteriaceae from seven genera: Citrobacter amalonaticus, Citrobacter farmeri, Citrobacter freundii, Klebsiella ozaenae, Klebsiella oxytoca, Klebsiella rhinoscleromatis, Morganella morganii, Serratia marcescens, Shigella flexneri, Plesiomonas shigelloides, and Vibrio cholerae. We estimated apparent kinetic parameters and found that 5-aminosalicylic acid, a compound efficient in the treatment of inflammatory bowel diseases, was acetylated with a catalytic efficiency 27 to 645 times higher than that for its isomer, 4-aminosalicylic acid. In contrast, para-aminobenzoic acid, a folate precursor in bacteria, was poorly acetylated. Of the wild-type strains studied, Pseudomonas aeruginosa was the best acetylator in terms of both substrate spectrum and catalytic efficiency. DNA hybridization with a Salmonella enterica serovar Typhimurium-derived probe suggested the presence of this enzyme in eight proteobacterial and four gram-positive species. Molecular aspects together with the kinetic data suggest distinct functional features for this class of microbial enzymes.


Subject(s)
Arylamine N-Acetyltransferase/metabolism , Colon/microbiology , Mesalamine/metabolism , Proteobacteria/enzymology , Acetylation , Arylamine N-Acetyltransferase/antagonists & inhibitors , Arylamine N-Acetyltransferase/classification , Arylamine N-Acetyltransferase/genetics , Blotting, Southern , DNA, Bacterial/analysis , Humans , Kinetics , Polymerase Chain Reaction , Proteobacteria/growth & development
2.
Proc Natl Acad Sci U S A ; 95(18): 10746-50, 1998 Sep 01.
Article in English | MEDLINE | ID: mdl-9724775

ABSTRACT

Rheumatoid arthritis (RA), the most common autoimmune disease, is associated in families with other autoimmune diseases, including insulin-dependent diabetes mellitus (IDDM). Its genetic component has been suggested by familial aggregation (lambdas = 5), twin studies, and segregation analysis. HLA, which is the only susceptibility locus known, has been estimated to account for one-third of this component. The aim of this paper was to identify new RA loci. A genome scan was performed with 114 European Caucasian RA sib pairs from 97 nuclear families. Linkage was significant only for HLA (P < 2.5.10(-5)) and nominal for 19 markers in 14 other regions (P < 0.05). Four of the loci implicated in IDDM potentially overlap with these regions: the putative IDDM6, IDDM9, IDDM13, and DXS998 loci. The first two of these candidate regions, defined in the RA genome scan by the markers D18S68-D18S61-D18S469 (18q22-23) and D3S1267 (3q13), respectively, were studied in 194 additional RA sib pairs from 164 nuclear families. Support for linkage to chromosome 3 only was extended significantly (P = 0.002). The analysis of all 261 families provided a linkage evidence of P = 0. 001 and suggested an interaction between this putative RA locus and HLA. This locus could account for 16% of the genetic component of RA. Candidate genes include those coding for CD80 and CD86, molecules involved in antigen-specific T cell recognition. In conclusion, this first genome scan in RA Caucasian families revealed 14 candidate regions, one of which was supported further by the study of a second set of families.


Subject(s)
Arthritis, Rheumatoid/genetics , Genetic Linkage , Genetic Predisposition to Disease , Genome , Genotype , HLA Antigens/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...