Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 16(155): 20190116, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31164076

ABSTRACT

The relationship between form and function in trees is the subject of a longstanding debate in forest ecology and provides the basis for theories concerning forest ecosystem structure and metabolism. Trees interact with the wind in a dynamic manner and exhibit natural sway frequencies and damping processes that are important in understanding wind damage. Tree-wind dynamics are related to tree architecture, but this relationship is not well understood. We present a comprehensive view of natural sway frequencies in trees by compiling a dataset of field measurement spanning conifers and broadleaves, tropical and temperate forests. The field data show that a cantilever beam approximation adequately predicts the fundamental frequency of conifers, but not that of broadleaf trees. We also use structurally detailed tree dynamics simulations to test fundamental assumptions underpinning models of natural frequencies in trees. We model the dynamic properties of greater than 1000 trees using a finite-element approach based on accurate three-dimensional model trees derived from terrestrial laser scanning data. We show that (1) residual variation, the variation not explained by the cantilever beam approximation, in fundamental frequencies of broadleaf trees is driven by their architecture; (2) slender trees behave like a simple pendulum, with a single natural frequency dominating their motion, which makes them vulnerable to wind damage and (3) the presence of leaves decreases both the fundamental frequency and the damping ratio. These findings demonstrate the value of new three-dimensional measurements for understanding wind impacts on trees and suggest new directions for improving our understanding of tree dynamics from conifer plantations to natural forests.


Subject(s)
Forests , Models, Biological , Trees/physiology , Wind
2.
J Theor Biol ; 236(3): 323-34, 2005 Oct 07.
Article in English | MEDLINE | ID: mdl-15961115

ABSTRACT

Root morphology influences strongly plant/soil interactions. However, the complexity of root architecture is a major barrier when analysing many phenomena, e.g. anchorage, water or nutrient uptake. Therefore, we have developed a new approach for the representation and modelling of root architecture based on branching density. A general root branching density in a space of finite dimension was used and enabled us to consider various morphological properties. A root system model was then constructed which minimizes the difference between measured and simulated root systems, expressed with functions which map root density in the soil. The model was tested in 2D using data from Maritime pine Pinus pinaster Ait. structural roots as input. We showed that simulated and real root systems had similar root distributions in terms of radial distance, depth, branching angle and branching order. These results indicate that general density functions are not only a powerful basis for constructing models of architecture, but can also be used to represent such structures when considering root/soil interaction. These models are particularly useful in that they provide a local morphological characterization which is aggregated in a given unit of soil volume.


Subject(s)
Pinus/anatomy & histology , Plant Roots/anatomy & histology , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...