Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Future Microbiol ; 18: 1185-1196, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37850346

ABSTRACT

Q fever is a zoonotic disease caused by the bacterium Coxiella burnetii. It is an occupational risk for employees of animal industries and is associated with contact with wildlife and domestic animals. Although Q fever infection may be asymptomatic, chronic sequelae such as endocarditis occur in 5% of symptomatic individuals. Disease outcomes may be predicted through measurement of immune correlates. Vaccination is the most efficient method to prevent Q fever. Currently, Q-VAX is the only licenced human vaccine. Q-VAX is highly effective; however, individuals previously exposed to C. burnetii are at risk of adverse reactions. This review examines the immunological responses of acute and chronic Q fever and the efforts to provide a safer and cost-effective Q fever vaccine.


Q fever is a disease that is spread by some animals, such as sheep and cattle, to humans. Although most people will recover if they get Q fever, some become very ill. There is a vaccine for Q fever (Q-VAX), but it can cause a reaction when given to some people. Research is ongoing into how the human immune system reacts to the bacteria that causes Q fever. A small number of people who get Q fever will develop a prolonged disease that can be serious and affect the heart, which is why there is also research into developing new vaccines for this disease. This research will look at those parts of the germ that causes Q fever that can be used for a new vaccine.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Humans , Q Fever/prevention & control , Q Fever/microbiology , Bacterial Vaccines , Zoonoses/prevention & control , Immunity
2.
Int J Sports Physiol Perform ; 16(11): 1700-1706, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33952710

ABSTRACT

PURPOSE: To establish if training volume was associated with androgen baselines and androgen responsiveness to acute exercise. METHODS: During a "high-volume" training phase, 28 cyclists (14 men and 14 women) undertook oxygen-uptake and maximal-work-capacity testing. Two days later, they completed a repeat-sprint protocol, which was repeated 3 weeks later during a "low-volume" phase. Blood and saliva samples were collected before and after (+5 and +60 min) the repeat-sprint protocol. Blood was assayed for total testosterone (TT), free testosterone (FT), and dihydrotestosterone (DHT) and saliva, for testosterone and DHT. RESULTS: Pretrial TT, FT, and DHT concentration was greater for males (P < .001, large effect size differences), and in both genders TT, DHT, and saliva for DHT was higher during high-volume loading (moderate to large effect size). Area-under-the-curve analysis revealed larger TT, FT, and DHT responses to the repeat-sprint protocol among females, and high-volume training was linked to larger TT, DHT, and saliva for DHT responses (moderate to large effect size). Baseline TT and FT correlated with oxygen uptake and work capacity in both genders (P < .05). CONCLUSION: DHT showed no acute performance correlation but was responsive to volume of training, particularly in females. This work informs on timelines and relationships of androgenic biomarkers in males and females across different training loads, adding to the complexity that should be considered in interpretation thereof. The authors speculate that testosterone may impact acute performance via behavioral mechanisms of motivation and attention; DHT, via training volume-induced androgenic promotion, may facilitate long-term adaptive changes, especially for females.


Subject(s)
Dihydrotestosterone , Testosterone , Athletes , Dihydrotestosterone/pharmacology , Exercise/physiology , Female , Humans , Male
3.
Rev Neurosci ; 32(6): 597-613, 2021 08 26.
Article in English | MEDLINE | ID: mdl-33583166

ABSTRACT

Depression continues to carry a major disease burden worldwide, with limitations on the success of traditional pharmacological or psychological treatments. Recent approaches have therefore focused upon the neurobiological underpinnings of depression, and on the "individualization" of depression symptom profiles. One such model of depression has divided the standard diagnostic criteria into four "depression subtypes", with neurological and behavioral pathways. At the same time, attention has been focused upon the region of the brain known as the "default mode network" (DMN) and its role in attention and problem-solving. However, to date, no review has been published of the links between the DMN and the four subtypes of depression. By searching the literature studies from the last 20 years, 62 relevant papers were identified, and their findings are described for the association they demonstrate between aspects of the DMN and the four depression subtypes. It is apparent from this review that there are potential positive clinical and therapeutic outcomes from focusing upon DMN activation and connectivity, via psychological therapies, transcranial magnetic stimulation, and some emerging pharmacological models.


Subject(s)
Default Mode Network , Depression , Brain , Brain Mapping , Depression/therapy , Humans , Magnetic Resonance Imaging , Neural Pathways
4.
Stress ; 24(4): 458-467, 2021 07.
Article in English | MEDLINE | ID: mdl-33287617

ABSTRACT

Studies have compared HPA and HPG stress reactivity across the follicular and luteal phases to assess the menstrual impact of estradiol and progesterone fluctuations. Ovulatory shifts in baseline and stressor-induced testosterone among athletic women offer a new framework to explore these responses. Here we investigated menstrual variation in baseline testosterone as a predictor of the acute testosterone and cortisol response to laboratory stressors in female athletes. Using a semi-randomized crossover design, thirty athletic women completed a physical (4 × 6-s bike sprints) and psychological (5 × 2-min cognitive tests with social evaluation) stressor on day seven (D7), 14 (D14), and 21 (D21) of a menstrual cycle. Baseline fluctuations and acute changes in salivary testosterone and cortisol were measured. The D14 testosterone response to both stressors (13.7%) exceeded D7 (7.3%) and D21 (7.0%), whereas cortisol was less responsive on D14 (9.8%) than D7 (13.0%) and D21 (12.0%); all moderate to large effect size differences (p < 0.01). Baseline testosterone, which presented large individual and menstrual variation with a D14 peak, was significantly related (moderate correlations) to testosterone and cortisol stress reactivity on a between-person level. Both outcomes were related (weak correlations) to within-person fluctuations in baseline testosterone, but these effects were mediated by testing day. In conclusion, menstrual variation in baseline testosterone concentration correlated with testosterone and cortisol reactivity to a physical and psychological stressor. Thus, gradients of stressor-induced hormonal change showed some dependency to endogenous testosterone, both individual differences and fluctuations over time, among naturally cycling athletic women.Lay summaryThe female menstrual cycle is accompanied by dramatic shifts in estradiol and progesterone concentration, but less is known about testosterone variability and its role in stress regulation. In this study, menstrual fluctuations in baseline testosterone concentration correlated with acute testosterone and cortisol reactivity to laboratory stressors.


Subject(s)
Hydrocortisone , Testosterone , Estradiol , Female , Humans , Laboratories , Menstrual Cycle , Progesterone , Saliva , Stress, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...