Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Joint Surg Am ; 99(21): 1851-1858, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29088040

ABSTRACT

BACKGROUND: Adequate irrigation of open musculoskeletal injuries is considered the standard of care to decrease bacterial load and other contaminants. While the benefit of debris removal compared with the risk of further seeding by high-pressure lavage has been studied, the effects of irrigation on muscle have been infrequently reported. Our aim in the present study was to assess relative damage to muscle by pulsatile lavage compared with bulb-syringe irrigation. METHODS: In an animal model of heterotopic ossification, 24 Sprague-Dawley rats underwent hindlimb blast amputation via detonation of a submerged explosive, with subsequent through-the-knee surgical amputation proximal to the zone of injury. All wounds were irrigated and underwent primary closure. In 12 of the animals, pulsatile lavage (20 psi [138 kPa]) was used as the irrigation method, and in the other 12 animals, bulb-syringe irrigation was performed. A third group of 6 rats did not undergo the blast procedure but instead underwent surgical incision into the left thigh muscle followed by pulsatile lavage. Serial radiographs of the animals were made to monitor the formation of soft-tissue radiopaque lesions until euthanasia at 6 months. Image-guided muscle biopsies were performed at 8 weeks and 6 months (at euthanasia) on representative animals from each group. Histological analysis was performed with hematoxylin and eosin, alizarin red, and von Kossa staining on interval biopsy and postmortem specimens. RESULTS: All animals managed with pulsatile lavage, with or without blast injury, developed soft-tissue radiopaque lesions, whereas no animal that had bulb-syringe irrigation developed these lesions (p = 0.001). Five of the 12 animals that underwent blast amputation with pulsatile lavage experienced wound complications, whereas no animal in the other 2 groups experienced wound complications (p = 0.014). Radiopaque lesions appeared approximately 10 days postoperatively, increased in density until approximately 16 weeks, then demonstrated signs of variable regression. Histological analysis of interval biopsy and postmortem specimens demonstrated tissue damage with inflammatory cells, cell death, and dystrophic calcification. CONCLUSIONS: Pulsatile lavage of musculoskeletal wounds can cause irreversible insult to tissue, resulting in myonecrosis and dystrophic calcification. CLINICAL RELEVANCE: The benefits and offsetting harm of pulsatile lavage (20 psi) should be considered before its routine use in the management of musculoskeletal wounds.


Subject(s)
Blast Injuries/therapy , Calcinosis/etiology , Muscle, Skeletal/pathology , Necrosis/etiology , Therapeutic Irrigation/methods , Animals , Calcinosis/pathology , Disease Models, Animal , Hindlimb/injuries , Male , Necrosis/pathology , Rats , Rats, Sprague-Dawley , Therapeutic Irrigation/adverse effects
2.
J Trauma Acute Care Surg ; 83(1 Suppl 1): S35-S42, 2017 07.
Article in English | MEDLINE | ID: mdl-28452879

ABSTRACT

BACKGROUND: Occupants of military vehicles targeted by explosive devices often suffer from traumatic brain injury (TBI) and are typically transported by the aeromedical evacuation (AE) system to a military medical center within a few days. This study tested the hypothesis that exposure of rats to AE-relevant hypobaria worsens cerebral axonal injury and neurologic impairment caused by underbody blasts. METHODS: Anesthetized adult male rats were secured within cylinders attached to a metal plate, simulating the hull of an armored vehicle. An explosive located under the plate was detonated, resulting in a peak vertical acceleration force on the plate and occupant rats of 100G. Rats remained under normobaria or were exposed to hypobaria equal to 8,000 feet in an altitude chamber for 6 hours, starting at 6 hours to 6 days after blast. At 7 days, rats were tested for vestibulomotor function using the balance beam walking task and euthanized by perfusion. The brains were then analyzed for axonal fiber injury. RESULTS: The number of internal capsule silver-stained axonal fibers was greater in animals exposed to 100G blast than in shams. Animals exposed to hypobaria starting at 6 hours to 6 days after blast exhibited more silver-stained fibers than those not exposed to hypobaria. Rats exposed to 100% oxygen (O2) during hypobaria at 24 hours postblast displayed greater silver staining and more balance beam foot-faults, in comparison with rats exposed to hypobaria under 21% O2. CONCLUSION: Exposure of rats to blast-induced acceleration of 100G increases cerebral axonal injury, which is significantly exacerbated by exposure to hypobaria as early as 6 hours and as late as 6 days postblast. Rats exposed to underbody blasts and then to hypobaria under 100% O2 exhibit increased axonal damage and impaired motor function compared to those subjected to blast and hypobaria under 21% O2. These findings raise concern about the effects of AE-related hypobaria on TBI victims, the timing of AE after TBI, and whether these effects can be mitigated by supplemental oxygen.


Subject(s)
Atmospheric Pressure , Blast Injuries/pathology , Brain Injuries, Traumatic/pathology , Acceleration , Air Ambulances , Altitude , Animals , Axons/pathology , Disease Models, Animal , Male , Military Medicine , Neurons/pathology , Rats
3.
J Neurotrauma ; 34(11): 1972-1980, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28322622

ABSTRACT

Blast-related traumatic brain injury (bTBI) resulting from improvised explosive devices is the hallmark injury of recent wars, and affects many returning veterans who experienced either direct or indirect exposure. Many of these veterans have long-term neurocognitive symptoms. However, there is very little evidence to show whether blast-induced acceleration alone, in the absence of secondary impacts, can cause mild TBI. In this study, we examine the effect of under-vehicle blast-induced hyperacceleration (uBIH) of ∼1700 g on the biochemical and microstrucutral changes in the brain using diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS). Two groups of adult male Sprague-Dawley (SD) rats were subjected to a sham procedure and uBIH, respectively. Axonal and neurochemical alterations were assessed using in vivo DTI and MRS at 2 h, 24 h, and 7 days after uBIH. Significant reduction in mean diffusivity, axial diffusivity, and radial diffusivity were observed in the hippocampus, thalamus, internal capsule, and corpus callosum as early as 2 h, and sustained up to 7 days post-uBIH. Total creatine (Cr) and glutamine (Gln) were reduced in the internal capsule at 24 h post-uBIH. The reductions in DTI parameters, Cr and Gln in vivo suggest potential activation of astrocytes and diffuse axonal injury following a single underbody blast, confirming previous histology reports.


Subject(s)
Acceleration/adverse effects , Blast Injuries/diagnostic imaging , Diffusion Tensor Imaging/trends , Hippocampus/diagnostic imaging , Internal Capsule/diagnostic imaging , Magnetic Resonance Spectroscopy , Animals , Blast Injuries/metabolism , Central Nervous System/diagnostic imaging , Central Nervous System/metabolism , Diffusion Tensor Imaging/methods , Hippocampus/metabolism , Internal Capsule/metabolism , Magnetic Resonance Spectroscopy/methods , Male , Rats , Rats, Sprague-Dawley
4.
Exp Neurol ; 289: 9-20, 2017 03.
Article in English | MEDLINE | ID: mdl-27923561

ABSTRACT

Many victims of blast-induced traumatic brain injury are occupants of military vehicles targeted by land mines. Recently improved vehicle designs protect these individuals against blast overpressure, leaving acceleration as the main force potentially responsible for brain injury. We recently developed a unique rat model of under-vehicle blast-induced hyperacceleration where exposure to acceleration as low as 50G force results in histopathological evidence of diffuse axonal injury and astrocyte activation, with no evidence of neuronal cell death. This study investigated the effects of much higher blast-induced accelerations (1200 to 2800G) on neuronal cell death, neuro-inflammation, behavioral deficits and mortality. Adult male rats were subjected to this range of accelerations, in the absence of exposure to blast overpressure, and evaluated over 28days for working memory (Y maze) and anxiety (elevated plus maze). In addition, brains obtained from rats at one and seven days post-injury were used for neuropathology and neurochemical assays. Sixty seven percent of rats died soon after being subjected to blasts resulting in 2800G acceleration. All rats exposed to 2400G acceleration survived and exhibited transient deficits in working memory and long-term anxiety like behaviors, while those exposed to 1200 acceleration G force only demonstrated increased anxiety. Behavioral deficits were associated with acute microglia/macrophage activation, increased hippocampal neuronal death, and reduced levels of tight junction- and synapse- associated proteins. Taken together, these results suggest that exposure of rats to high underbody blast-induced G forces results in neurologic injury accompanied by neuronal apoptosis, neuroinflammation and evidence for neurosynaptic alterations.


Subject(s)
Blast Injuries/complications , Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/pathology , Brain/pathology , Gene Expression Regulation/physiology , Acceleration/adverse effects , Animals , Antigens, Differentiation/metabolism , Brain/metabolism , Brain Injuries, Traumatic/mortality , Caspase 3/metabolism , Cyclin D1/metabolism , Disease Models, Animal , Disks Large Homolog 4 Protein , HSP70 Heat-Shock Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Male , Maze Learning/physiology , Membrane Proteins/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Sprague-Dawley , Time Factors , Zonula Occludens-1 Protein/metabolism , von Willebrand Factor/metabolism
5.
Clin Orthop Relat Res ; 473(8): 2680-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25917424

ABSTRACT

BACKGROUND: Heterotopic ossification (HO) develops after nearly 2/3 of traumatic blast amputations in the contemporary battlefield. This phenomenon has potentially devastating consequences for servicemen and women and its pathophysiology warrants further investigation using a previously developed animal blast model. QUESTIONS/PURPOSES: We asked, what is the (1) severity (quantity) and (2) type (location) of HO bone formation after a hindlimb blast amputation with two distinct blast media. We hypothesized that a more "war-relevant" blast medium could be a more accurate model and potentially intensify the development of HO. METHODS: Using a Sprague-Dawley rat model, the pathophysiology of ectopic bone formation in a traumatic hindlimb blast amputation was evaluated. Twenty-four animals underwent blast amputations and closure based on a previously established experimental model. Half the amputations were subjected to blasted sand and the other 1/2 to blasted water. Serial orthogonal radiography was performed on each animal until euthanasia at 24 weeks to track the development of HO. Heterotopic bone severity and type were assessed by three independent graders at each time using a novel grading scale to assess quantity and quality of HO. RESULTS: All animals had radiographic evidence of HO develop. No differences were observed in ectopic bone development between sand and water blasting regarding severity or type at any time. Animals that received water and sand blasting had moderate HO develop at 24 weeks (median, 2.0 and 2.5 weeks, respectively; range, 1-3 weeks; difference of medians, 0.5; p=0.67). At the time of euthanasia, 10 animals that were water blasted had Type 3 HO compared with 11 in the sand-blasted group (p=1.00). CONCLUSIONS: Our study showed a clear development of HO after hindlimb blast amputation in a Sprague-Dawley rat model; however, no difference was observed in HO development based on the type of blast media. This suggests it is the blast mechanism that induces ectopic bone development, regardless of the blasted medium. The grading scale we developed for our animal-model study provided a reliable means of assessing HO severity and type. CLINICAL RELEVANCE: We anticipate that future investigations will elucidate similarities between service members' wartime extremity injuries and the animal model used in our study, and with focused future research this model may have beneficial therapeutic implications as the pathophysiology of HO development is further understood.


Subject(s)
Amputation, Traumatic/etiology , Blast Injuries/etiology , Hindlimb/injuries , Ossification, Heterotopic/etiology , Amputation, Traumatic/diagnostic imaging , Amputation, Traumatic/physiopathology , Amputation, Traumatic/surgery , Animals , Blast Injuries/diagnostic imaging , Blast Injuries/physiopathology , Blast Injuries/surgery , Disease Models, Animal , Hindlimb/diagnostic imaging , Hindlimb/physiopathology , Male , Ossification, Heterotopic/diagnostic imaging , Ossification, Heterotopic/physiopathology , Radiography , Rats, Sprague-Dawley , Severity of Illness Index , Time Factors
6.
J Trauma Acute Care Surg ; 77(3 Suppl 2): S83-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25159367

ABSTRACT

BACKGROUND: More than 300,000 US war fighters in Operations Iraqi and Enduring Freedom have sustained some form of traumatic brain injury (TBI), caused primarily by exposure to blasts. Many victims are occupants in vehicles that are targets of improvised explosive devices. These underbody blasts expose the occupants to vertical acceleration that can range from several to more than 1,000 G; however, it is unknown if blast-induced acceleration alone, in the absence of exposure to blast waves and in the absence of secondary impacts, can cause even mild TBI. METHODS: We approached this knowledge gap using rats secured to a metal platform that is accelerated vertically at either 20 G or 50 G in response to detonation of a small explosive (pentaerythritol tetranitrate) located at precise underbody standoff distances. All rats survived the blasts and were perfusion fixed for brain histology at 4 hours to 30 days later. RESULTS: Robust silver staining indicative of axonal injury was apparent throughout the internal capsule, corpus callosum, and cerebellum within 24 hours after blast exposure and was sustained for at least 7 days. Astrocyte activation, as measured morphologically with brains immunostained for glial fibrillary acidic protein, was also apparent early after the blast and persisted for at least 30 days. CONCLUSION: Exposure of rats to underbody blast-induced accelerations at either 20 G or 50 G results in histopathologic evidence of diffuse axonal injury and astrocyte activation but no significant neuronal death. The significance of these results is that they demonstrate that blast-induced vertical acceleration alone, in the absence of exposure to significant blast pressures, causes mild TBI. This unique animal model of TBI caused by underbody blasts may therefore be useful in understanding the pathophysiology of blast-induced mild TBI and for testing medical and engineering-based approaches toward mitigation.


Subject(s)
Blast Injuries/pathology , Brain Injuries/pathology , Acceleration/adverse effects , Animals , Blast Injuries/etiology , Bombs , Brain/pathology , Brain Injuries/etiology , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...