Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(18): 21036-21044, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32274923

ABSTRACT

In the quest for the replacement of indium tin oxide (ITO), Ti-doped zinc oxide (TZO) films have been synthesized by atomic layer deposition (ALD) and applied as an n-type transparent conductive oxide (TCO). TZO thin films were obtained from titanium (IV) i-propoxide (TTIP), diethyl zinc, and water by introducing TiO2 growth cycle in a ZnO matrix. Process parameters such as the order of precursor introduction, the cycle ratio, and the film thickness were optimized. The as-deposited films were analyzed for their surface morphology, elemental stoichiometry, optoelectronic properties, and crystallinity using a variety of characterization techniques. The growth mechanism was investigated for the first time by in situ quartz crystal microbalance measurements. It evidenced different insertion modes of titanium depending on the precursor introduction, as well as the etching of Zn-Et surface groups by TTIP. Resistivity as low as 1.2 × 10-3 Ω cm and transmittance >80% in the visible range were obtained for 72-nm-thick films. Finally, the first application of ALD-TZO as TCO was reported. TZO films were successfully implemented as top electrodes in silicon nanowire solar cells. The unique properties of TZO combined with conformal coverage realized by the ALD technique make it possible for the cell to show almost flat external quantum efficiency (EQE) response, surpassing the bell-like EQE curve seen in devices with a sputtered ITO top electrode.

2.
Nat Commun ; 10(1): 1586, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962450

ABSTRACT

The development of high efficiency solar cells relies on the management of electronic and optical properties that need to be accurately measured. As the conversion efficiencies increase, there is a concomitant electronic and photonic contribution that affects the overall performances. Here we show an optical method to quantify several transport properties of semiconducting materials and the use of multidimensional imaging techniques allows decoupling and quantifying the electronic and photonic contributions. Example of application is shown on halide perovskite thin film for which a large range of transport properties is given in the literature. We therefore optically measure pure carrier diffusion properties and evidence the contribution of optical effects such as the photon recycling as well as the photon propagation where emitted light is laterally transported without being reabsorbed. This latter effect has to be considered to avoid overestimated transport properties such as carrier mobility, diffusion length or diffusion coefficient.

SELECTION OF CITATIONS
SEARCH DETAIL
...