Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Public Health ; 23(1): 924, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217931

ABSTRACT

BACKGROUND: Climate change is increasing the dispersion of mosquitoes and the spread of viruses of which some mosquitoes are the main vectors. In Quebec, the surveillance and management of endemic mosquito-borne diseases, such as West Nile virus or Eastern equine encephalitis, could be improved by mapping the areas of risk supporting vector populations. However, there is currently no active tool tailored to Quebec that can predict mosquito population abundances, and we propose, with this work, to help fill this gap. METHODS: Four species of mosquitos were studied in this project for the period from 2003 to 2016 for the southern part of the province of Quebec: Aedes vexans (VEX), Coquillettidia perturbans (CQP), Culex pipiens-restuans group (CPR) and Ochlerotatus stimulans group (SMG) species. We used a negative binomial regression approach, including a spatial component, to model the abundances of each species or species group as a function of meteorological and land-cover variables. We tested several sets of variables combination, regional and local scale variables for landcover and different lag period for the day of capture for weather variables, to finally select one best model for each species. RESULTS: Models selected showed the importance of the spatial component, independently of the environmental variables, at the larger spatial scale. In these models, the most important land-cover predictors that favored CQP and VEX were 'forest', and 'agriculture' (for VEX only). Land-cover 'urban' had negative impact on SMG and CQP. The weather conditions on the trapping day and previous weather conditions summarized over 30 or 90 days were preferred over a shorter period of seven days, suggesting current and long-term previous weather conditions effects on mosquito abundance. CONCLUSIONS: The strength of the spatial component highlights the difficulties in modelling the abundance of mosquito species and the model selection shows the importance of selecting the right environmental predictors, especially when choosing the temporal and spatial scale of these variables. Climate and landscape variables were important for each species or species group, suggesting it is possible to consider their use in predicting long-term spatial variationsin the abundance of mosquitoes potentially harmful to public health in southern Quebec.


Subject(s)
Aedes , Culex , Culicidae , West Nile virus , Animals , Humans , Quebec/epidemiology , Mosquito Vectors
2.
J Environ Manage ; 301: 113817, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34607136

ABSTRACT

Assessing trade-offs among ecosystem services (ESs) that are provided by forests is necessary to support decision-making and to minimize negative effects of timber harvesting. In this study, we examined how spatial data, forest operational rules, ESs, and probabilistic statistics can be combined into a practical tool for trade-off analysis that could guide decision-making towards sustainable forestry. Our main goal was to analyze trade-offs among the wood provisioning ES and other forest ESs at the landscape level using a Bayesian belief network (BBN). We used LiDAR data to derive four ES layers as inputs to a spatial BBN: (i) wood provisioning; (ii) erosion regulating; (iii) climate regulating; and (iv) habitat supporting. We quantified operational constraints with four forest operational rules (FOR) that were defined in terms of: (i) potential harvest block size; (ii) distance between a small potential harvest block and a larger harvest block; (iii) gross merchantable volume (GMV); and (iv) distance to an existing resource road. Maps of the most probable trade-off classes between the wood provisioning ES and other ESs enabled us to identify areas where timber harvesting should be avoided or where timber harvesting should have a very low negative effect on other ESs. Even with our most restrictive management scenario, the total GMV that could be harvested met the annual allowable cut (AAC) volume required to meet sustainable forestry objectives. Through our study, we demonstrated that high-resolution spatial data could be used to quantify trade-offs among wood provisioning ES and other forest-related ESs and to simulate small changes in ES indicators within the BBN. We also demonstrated the potential to evaluate management scenarios to reduce trade-offs by considering FOR as inputs to the BBN. Maps of the most probable trade-off classes among two or three ESs under operational constraints provide key information to guide forest management decision-making towards sustainable forestry.


Subject(s)
Ecosystem , Forestry , Bayes Theorem , Conservation of Natural Resources , Forests
3.
Sensors (Basel) ; 22(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35009577

ABSTRACT

Species identification is a critical factor for obtaining accurate forest inventories. This paper compares the same method of tree species identification (at the individual crown level) across three different types of airborne laser scanning systems (ALS): two linear lidar systems (monospectral and multispectral) and one single-photon lidar (SPL) system to ascertain whether current individual tree crown (ITC) species classification methods are applicable across all sensors. SPL is a new type of sensor that promises comparable point densities from higher flight altitudes, thereby increasing lidar coverage. Initial results indicate that the methods are indeed applicable across all of the three sensor types with broadly similar overall accuracies (Hardwood/Softwood, 83-90%; 12 species, 46-54%; 4 species, 68-79%), with SPL being slightly lower in all cases. The additional intensity features that are provided by multispectral ALS appear to be more beneficial to overall accuracy than the higher point density of SPL. We also demonstrate the potential contribution of lidar time-series data in improving classification accuracy (Hardwood/Softwood, 91%; 12 species, 58%; 4 species, 84%). Possible causes for lower SPL accuracy are (a) differences in the nature of the intensity features and (b) differences in first and second return distributions between the two linear systems and SPL. We also show that segmentation (and field-identified training crowns deriving from segmentation) that is performed on an initial dataset can be used on subsequent datasets with similar overall accuracy. To our knowledge, this is the first study to compare these three types of ALS systems for species identification at the individual tree level.


Subject(s)
Forests , Trees , Lasers , Light
4.
J Environ Manage ; 246: 334-344, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31185320

ABSTRACT

Wetlands are affected by climate and anthropogenic changes, which influence the ecosystem services (ES) they provide. This study presents a spatially explicit quantification of wetland ESs. The study site is the Yamaska river watershed located in Quebec, Canada. The proposed approach includes four main steps: (1) statistical selection of function indicators (FI) to build a composite ecosystem service indicator (ESI); (2) temporal land use mapping for past (1984), recent (2011) and future scenarios (2050); (3) mapping and quantification of FIs and ESIs at all temporal and spatial scales; and (4) synthesis of multispatial and multitemporal information using a diagram representation. Results present the spatiotemporal evolution of the ES on maintaining habitat provided by wetlands in the studied watershed. The historical characterization shows a general degradation of this service on the entire study area for the last 30 years. The proposed approach can target priority sectors in which this service has deteriorated or is lacking. Future scenarios show the urgency to act in order to preserve current intact areas, because even the optimistic scenario indicates that the studied ES would not return to its 1984 state. The proposed approach allows a spatiotemporal mapping of ESs combined with a visualization of their ecological, social, and economic components in a context of territorial management scenarios. This multi-scale method is reproducible, robust and can be replicated for other ESs in different territories.


Subject(s)
Ecosystem , Wetlands , Canada , Conservation of Natural Resources , Quebec
5.
Sensors (Basel) ; 8(1): 529-560, 2008 01 24.
Article in English | MEDLINE | ID: mdl-27879721

ABSTRACT

Forest inventory data often provide the required base data to enable the largearea mapping of biomass over a range of scales. However, spatially explicit estimates ofabove-ground biomass (AGB) over large areas may be limited by the spatial extent of theforest inventory relative to the area of interest (i.e., inventories not spatially exhaustive), orby the omission of inventory attributes required for biomass estimation. These spatial andattributional gaps in the forest inventory may result in an underestimation of large areaAGB. The continuous nature and synoptic coverage of remotely sensed data have led totheir increased application for AGB estimation over large areas, although the use of thesedata remains challenging in complex forest environments. In this paper, we present anapproach to generating spatially explicit estimates of large area AGB by integrating AGBestimates from multiple data sources; 1. using a lookup table of conversion factors appliedto a non-spatially exhaustive forest inventory dataset (R² = 0.64; RMSE = 16.95 t/ha), 2.applying a lookup table to unique combinations of land cover and vegetation densityoutputs derived from remotely sensed data (R² = 0.52; RMSE = 19.97 t/ha), and 3. hybridmapping by augmenting forest inventory AGB estimates with remotely sensed AGB estimates where there are spatial or attributional gaps in the forest inventory data. Over our714,852 ha study area in central Saskatchewan, Canada, the AGB estimate generated fromthe forest inventory was approximately 40 Mega tonnes (Mt); however, the inventoryestimate represents only 51% of the total study area. The AGB estimate generated from theremotely sensed outputs that overlap those made from the forest inventory based approachdiffer by only 2 %; however in total, the remotely sensed estimate is 30 % greater (58 Mt)than the estimate generated from the forest inventory when the entire study area isaccounted for. Finally, using the hybrid approach, whereby the remotely sensed inputswere used to fill spatial gaps in the forest inventory, the total AGB for the study area wasestimated at 62 Mt. In the example presented, data integration facilitates comprehensiveand spatially explicit estimation of AGB for the entire study area.

SELECTION OF CITATIONS
SEARCH DETAIL
...