Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 22(8): 788-795, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33529486

ABSTRACT

An inner-sphere disproportionation mechanism of the Co(I) precursor CoCl(PPh3 )3 is described through a Density Functional Theory study. The essential role of oleylamine in this process is unravelled. A detailed analysis of the electronic structure of Cobalt dimers of the general formula Co2 Cl2 Ln (L=NH3 and PH3 ) demonstrates that electron transfer is triggered by asymetric coordination of amine and phosphine to stabilize a mixed-valence Co(II)-Co(0) dimer. This is consistent with the HSAB statement that both amine and phosphine ligands are required to stabilize the reaction products, respectively Co(II) and Co(0) centers. We propose a quasi-athermic multi-step disproportionation mechanism with low activation barriers where the electron transfer goes through simple ligand exchanges between Co.

2.
J Mol Model ; 22(8): 190, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27449669

ABSTRACT

Quercetin is a prototypical antioxidant and prominent member of flavonoids, a large group of natural polyphenols. The oxidation of quercetin may lead to its dimerization, which is a paradigm of the more general polyphenol oligomerization. There exist two opposing mechanisms to describe the dimerization process, namely radical-coupling or Diels-Alder reactions. This work presents a comprehensive rationalization of this dimerization process, acquired from density functional theory (DFT) calculations. It is found that the two-step radical-coupling pathway is thermodynamically and kinetically preferred over the Diels-Alder reaction. This is in agreement with the experimental results showing the formation of only one isomer, whereas the Diels-Alder mechanism would yield two isomers. The evolution in bonding, occurring during these two processes, is investigated using the atoms in molecules (AIM) and electron localization function (ELF) topological approaches. It is shown that some electron density is accumulated between the fragments in the transition state of the radical-coupling reaction, but not in the transition state of the Diels-Alder process. Graphical Abstract Quantum chemistry calculations of the dimerization process of quercetin show that a radical coupling approach is preferred to a Diels-Alder type reaction, in agreement with experimental results. Analysis of the bonding evolution highlights the reaction mechanism.

3.
Chemphyschem ; 15(3): 467-77, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24488791

ABSTRACT

This paper deals with the possibility of forming short and relatively strong carbon-helium bonds in small typical organic molecules through substitution of one or several H atoms by He(+). A structural and energetics study (based on high-level calculations) of this unusual bonding, as well as a topological characterization of the resulting cations, is undertaken. Stable species generally requires substitution of about half of the hydrogen atoms for formation. Under these conditions, the number of such species appears to be potentially unlimited. "True" C-He bonds exhibit equilibrium distances ranging from 1.327 (C2H2He2(2+)) to 1.129 Å (He2CO(2+)). The energies of neutral He releasing range from approximately 5 kcal mol(-1) [He2CO(2+), (Z)-C2H2He2(2+)] to 25 kcal mol(-1) (C2HHe3(3+)), but remain most frequently around 10 kcal mol(-1). However, most of He(+)-substituted hydrocarbons are metastable with respect to C-C cleavage, except derivatives of ethene. Atoms in molecules (AIM) and electron localization function (ELF) topological descriptors classify the C-He bond as a weak charge-shift interaction [S. Shaik, D. Danovich, B. Silvi, D. L. Lauvergnat, P. C. Hiberty, Chem. Eur. J. 2005, 11, 6358-6371] in agreement with a recent publication by Rzepa [S. H. Rzepa, Nat. Chem. 2010, 2, 390-393]. He2CO(2+) is the only investigated compound that presents a C-He bonding ELF basin, which indicates a non-negligible covalent contribution to the bond. Other modifications in the electronic structure, such as the breaking of the triple bond in ethyne derivatives or the loss of aromaticity in C6H3He3(3+), are also nicely revealed by the ELF topology.

4.
Inorg Chem ; 52(3): 1217-27, 2013 Feb 04.
Article in English | MEDLINE | ID: mdl-23347164

ABSTRACT

The "inverse hydration" of neutral complexes of Pt(II) by an axial water molecule, whose one OH-bond is oriented toward Pt, has been the subject of recent works, theoretical as well as experimental. To study the influence of the ligands on this non-conventional H-bond, we extend here our previous energy calculations, using the second-order Moeller-Plesset perturbation theory (MP2) method together with the Dolg-Pélissier pseudopotential for platinum, to various neutral complexes including the well-known chemotherapeutic agent "cisplatin". The stabilization energy, depending on the nature and the configuration of platinum ligands, is dominated by the same important dispersive component, for all the investigated complexes. For a further characterization of this particular H-bond, we used the atoms in molecules theory (AIM) and the topological analysis of the electron localization function (ELF). The charge transfer occurring from the complex to the water molecule and the Laplacian of the density at the bond critical point between water and Pt are identified as interesting AIM descriptors of this non-conventional H-bond. Beyond this AIM analysis, we show that the polarization of the ELF bonding O-H basin involved in the non-conventional H-bond is enhanced during the approach of the water molecule to the Pt complexes. When the water medium, treated in an implicit solvation model, is taken into account, the interaction energies become independent on the nature and configuration of platinum ligands. However, the topological descriptors remain qualitatively unchanged.


Subject(s)
Platinum/chemistry , Quantum Theory , Water/chemistry
5.
J Phys Chem B ; 116(31): 9352-62, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22747412

ABSTRACT

The protein residue methionine (Met) is one of the main targets of oxidizing free radicals produced in oxidative stress. Despite its biological importance, the mechanism of the oxidation of this residue is still partly unknown. In particular the one-electron redox potentials of the couple Met(•+)/Met have not been measured. In this work, two approaches, experimental as well as theoretical, were applied for three dipeptides L-Met L-Gly, L-Gly L-Met and L-Met L-Met. Measurements by electrochemistry indicated differences in the ease of oxidation. Two DFT methods (BH&HLYP and PBE0) with two basis sets (6-31G(d) and 6-311+G(2d,2p)) were used to determine the redox potentials of Met in these peptides present in different conformations. In agreement with experimental results, we show that they vary with the sequence and the spatial structure of the peptide, most of the values being higher than 1 V (up to 2 V) vs NHE.


Subject(s)
Dipeptides/chemistry , Methionine/chemistry , Amino Acid Sequence , Electrons , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Quantum Theory
6.
J Phys Chem A ; 114(27): 7359-68, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20557091

ABSTRACT

One electron oxidation of methionine in peptides is highly dependent on the local structure. The sulfur-centered radical cation can complex with oxygen, nitrogen, or other sulfur atoms from a neighboring residue or from the peptidic bond, forming an intramolecular S therefore X two-center three-electron bond (X = S, N, O). This stabilization was investigated computationally in the radical cations of three peptides, methionine glycine (Met Gly) and its reverse sequence Gly Met, and Met Met. Geometry optimizations were done at the BH&HLYP/6-31G(d) level of theory and the effect of solvation was taken into account using a continuum model (CPCM). Up to seven stable conformations were considered for each peptide, with formation of 5-10 member cycles involving nitrogen from the peptidic bond or from the amine, oxygen from the peptidic bond or from the carboxylate group, or sulfur from the other residue for Met Met. The absorption wavelengths corresponding to the sigma --> sigma* transition calculated for each complex at the TD-BH&HLYP/6-311+G(d,p)//BH&HLYP/6-31G(d) level of theory vary from the near-UV for the S therefore O bonds to the green visible for the S therefore S bonds. For X = N, they increase with the SN distance as expected for a 2c-3e bond, whereas for X = O they slightly decrease. Characterization of these 2c-3e bonds as a function of the sequence, using the ELF and the AIM topological analyses, shows the different natures of the S therefore X bonds, which is purely 2c-3e for X = S, mainly 2c-3e with a part of electrostatic interaction for X = N and mainly electrostatic for X = O.


Subject(s)
Dipeptides/chemistry , Electrons , Methionine/chemistry , Cations/chemistry , Computer Simulation , Free Radicals/chemistry , Models, Chemical , Molecular Conformation , Molecular Structure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...