Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(38): 21086-21095, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37698953

ABSTRACT

Parahydrogen induced polarization (PHIP) can address the low sensitivity problem intrinsic to nuclear magnetic resonance spectroscopy. Using a catalyst capable of reacting with parahydrogen and substrate in either a hydrogenative or nonhydrogenative manner can result in signal enhancement of the substrate. This work describes the development of a rare example of an iron catalyst capable of reacting with parahydrogen to hyperpolarize olefins. Complexes of the form (MesCCC)Fe(H)(L)(N2) (L = Py (Py = pyridine), PMe3, PPh3) were synthesized from the reaction of the parent complexes (MesCCC)FeMes(L) (Mes = mesityl) with H2. The isolated low-spin iron(II) hydride compounds were characterized via multinuclear NMR spectroscopy, infrared spectroscopy, and single crystal X-ray diffraction. (MesCCC)Fe(H)(Py)(N2) is competent in the hydrogenation of olefins and demonstrated high activity toward the hydrogenation of monosubstituted terminal olefins. Reactions with p-H2 resulted in the first PHIP effect mediated by iron which requires diamagnetism throughout the reaction sequence. This work represents the development of a new PHIP catalyst featuring iron, unlocking potential to develop more PHIP catalysts based on first-row transition metals.

2.
J Am Chem Soc ; 145(38): 20868-20873, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37712762

ABSTRACT

Seleniferous oxyanions are groundwater contaminants from both anthropogenic and natural sources, while pure amorphous selenium nanoparticles have a variety of industrial applications. Biology can achieve the multicomponent 6 e-/8 H+ reduction of selenate to amorphous selenium using multiple metalloenzymes, like selenate and selenite reductase. Inspired by biology, we developed a new homogeneous system that can generate pure elemental selenium with no caustic waste. The stoichiometric reductions of selenate, selenite, and selenium dioxide with an iron(II) complex produced an iron(III)-oxo and red elemental selenium, the latter of which has been characterized by a variety of spectroscopic techniques. The catalytic reduction of SeO42- and SeO32- directly to amorphous Se and isolated as Se=PPh3 is reported with a turnover number of 12 and 7, respectively.

3.
Organometallics ; 42(9): 832-837, 2023 May 08.
Article in English | MEDLINE | ID: mdl-38357387

ABSTRACT

The metalation of the DIPPCCC (DIPPCCC = bis(diisopropylphenyl-imidazol-2-ylidene)phenyl) ligand platform with Pd was achieved under mild conditions by reacting [H3(DIPPCCC)]Cl2 with Pd(OAc)2 at room temperature in the presence of 3.1 equiv of LiN(SiMe3)2. The resulting complexes (DIPPCCC)PdX (X = Cl or Br) were oxidized by two-electron oxidants PhICl2, Br2, and BTMABr3. All the complexes were crystallographically characterized, and analysis of structural parameters around the ligand scaffold show no evidence of a ligand-centered radical, rendering the metal center in the oxidized species, (DIPPCCC)PdX3 (X = Cl or Br), a formal PdIV oxidation state. Unlike their NiIV analogues, these PdIV complexes are stable to air and moisture. The addition of styrene to (DIPPCCC)PdBr3 resulted in the clean reduction of PdIV to PdII, along with the formation of the halogenated alkane. The oxidation to PdIV and subsequent return to PdII upon reduction, as opposed to formation of PdIII species, showcases the accessibility of high-valent palladium DIPPCCC complexes.

4.
Chem Commun (Camb) ; 58(69): 9626-9629, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35959650

ABSTRACT

Agostic interactions were observed in the bound mesityl group in a series of iron compounds bearing a bis(NHC) pincer CCC ligand. The L-type ligand on [(CCC)FeIIMes(L)] complexes influences the strength of the agostic interaction and is manifested in the upfield shift of the 1H NMR resonance for the mesityl methyl resonances. The nature of the interaction was further investigated by density functional theory calculations, allowing rationalization of some unexpected trends and proving to be a powerful predictive tool.

5.
Inorg Chem ; 61(21): 8182-8192, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35580163

ABSTRACT

The reduction of nitrite (NO2-) to generate nitric oxide (NO) is a significant area of research due to their roles in the global nitrogen cycle. Here, we describe various modifications of the tris(5-cyclohexyliminopyrrol-2-ylmethyl)amine H3[N(piR)3] ligand where the steric bulk and acidity of the secondary coordination sphere were explored in the non-heme iron system for nitrite reduction. The cyclohexyl and 2,4,6-trimethylphenyl variants of the ligand were used to probe the mechanism of nitrite reduction. While previously stoichiometric addition of nitrite to the iron(II)-species generated an iron(III)-oxo complex, changing the secondary coordination sphere to mesityl resulted in an iron(III)-hydroxo complex. Subsequent addition of an electron and two protons led to the release of water and regeneration of the starting iron(II) catalyst. This sequence mirrored the proposed mechanism of nitrite reduction in biological systems, where the distal histidine residue shuttles protons to the active site. Computational studies aimed at interrogating the dissimilar behavior of the cyclohexyl and mesityl ligand systems resulting in Fe(III)-oxo and Fe(III)-hydroxo complexes, respectively, shed light on the key role of H-bonds involving the secondary coordination sphere in the relative stability of these species.


Subject(s)
Ferric Compounds , Nitrites , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Iron/chemistry , Ligands , Nitrites/chemistry , Protons
6.
Inorg Chem ; 60(18): 13757-13758, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34538056
7.
Dalton Trans ; 50(35): 12088-12092, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34519757

ABSTRACT

Hydrogen bonding networks are vital for metallo-enzymes to function; however, modeling these systems is non-trivial. We report the synthesis of metal chloride (M = Mn, Fe, Co) complexes with intra- and inter-ligand hydrogen bonding interactions. The intra-ligand hydrogen bonds are shown to have a profound effect on the geometry of the metal center.

8.
Chemphyschem ; 22(14): 1518-1526, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34043874

ABSTRACT

The role of ligands in rhodium- and iridium-catalyzed Parahydrogen Induced Polarization (PHIP) and SABRE (signal amplification by reversible exchange) chemistry has been studied in the benchmark systems, [Rh(diene)(diphos)]+ and [Ir(NHC)(sub)3 (H)2 ]+ , and shown to have a great impact on the degree of hyperpolarization observed. Here, we examine the role of the flanking moieties in the electron-rich monoanionic bis(carbene) aryl pincer ligand, Ar CCC (Ar=Dipp, 2,6-diisopropyl or Mes, 2,4,6-trimethylphenyl) on the cobalt-catalyzed PHIP and PHIP-IE (PHIP via Insertion and Elimination) chemistry that we have previously reported. The mesityl groups were exchanged for diisopropylphenyl groups to generate the (Dipp CCC)Co(N2 ) catalyst, which resulted in faster hydrogenation and up to 390-fold 1 H signal enhancements, larger than that of the (Mes CCC)Co-py (py=pyridine) catalyst. Additionally, the synthesis of the (Dipp CCC)Rh(N2 ) complex is reported and applied towards the hydrogenation of ethyl acrylate with parahydrogen to generate modest signal enhancements of both 1 H and 13 C nuclei. Lastly, the generation of two (Mes CCC)Ir complexes is presented and applied towards SABRE and PHIP-IE chemistry to only yield small 1 H signal enhancements of the partially hydrogenated product (PHIP) with no SABRE hyperpolarization.

9.
Inorg Chem ; 58(23): 15801-15811, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31714068

ABSTRACT

O2 activation at nonheme iron centers is a common motif in biological systems. While synthetic models have provided numerous insights into the reactivity of high-valent iron-oxo complexes related to biological processes, the majority of these complexes are synthesized using alternative oxidants. This report describes O2 activation by an iron(II)-triflate complex of the imino-functionalized tris(pyrrol-2-ylmethyl)amine ligand framework, H3[N(piCy)3]. Initial reaction conditions result in the formation of a mixture of oxidation products including terminal iron(III)-oxo and iron(III)-hydroxo complexes. The relevance of these species to the O2 activation process is demonstrated through reactivity studies and electrochemical analysis of the iron(III)-oxo complex.

10.
J Am Chem Soc ; 141(16): 6639-6650, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30969766

ABSTRACT

The characterization of high-valent iron centers in enzymes has been aided by synthetic model systems that mimic their reactivity or structural and spectral features. For example, the cleavage of dioxygen often produces an iron(IV)-oxo that has been characterized in a number of enzymatic and synthetic systems. In non-heme 2-oxogluterate dependent (iron-2OG) enzymes, the ferryl species abstracts an H-atom from bound substrate to produce the proposed iron(III)-hydroxo and caged substrate radical. Most iron-2OG enzymes perform a radical rebound hydroxylation at the site of the H-atom abstraction (HAA); however, recent reports have shown that certain substrates can be desaturated through the loss of a second H atom at a site adjacent to a heteroatom (N or O) for most native desaturase substrates. One proposed mechanism for the removal of the second H-atom  involves a polar-cleavage mechanism (electron transfer-proton transfer) by the iron(III)-hydroxo, as opposed to a second HAA. Herein we report the synthesis and characterization of a series of iron complexes with hydrogen bonding interactions between bound aquo or hydroxo ligands and the secondary coordination sphere in ferrous and ferric complexes. Interconversion among the iron species is accomplished by stepwise proton or electron addition or subtraction, as well as H-atom transfer (HAT). The calculated bond dissociation free energies (BDFEs) of two ferric hydroxo complexes, differentiated by their noncovalent interactions and reactivity, suggest that neither complex is capable of activating even weak C-H bonds, lending further support to the proposed mechanism for desaturation in iron-2OG desaturase enzymes. Additionally, the ferric hydroxo species are differentiated by their reactivity toward performing a radical rebound hydroxylation of triphenylmethylradical. Our findings should encourage further study of the desaturase systems that may contain unique H-bonding motifs proximal to the active site that help bias substrate desaturation over hydroxylation.

11.
J Am Chem Soc ; 140(44): 14844-14850, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30358390

ABSTRACT

The use of a cobalt-based catalyst for the generation of hyperpolarized 13C NMR resonances by parahydrogenation of ethyl acrylate is presented herein. Comparisons of the carboxylate 13C NMR signal enhancement factor of ethyl propionate between using (MesCCC)Co-py and a commonly utilized cationic diphosphine rhodium complex demonstrates that the cobalt system is a viable PHIP catalyst alternative. Furthermore, the operative hydrogenation mechanism of the cobalt system was examined by using 1H, 13C, and parahydrogen-induced polarization NMR spectroscopies to elucidate reaction intermediates affiliated with the observed 1H and 13C NMR signal enhancements in ethyl propionate.

12.
J Am Chem Soc ; 139(38): 13554-13561, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28906106

ABSTRACT

The selective hydrogenation of nitriles to primary amines using a bench-stable cobalt precatalyst under 4 atm of H2 is reported herein. The catalyst precursor was reduced in situ using NaHBEt3, and the resulting Lewis acid formed, BEt3, was found to be integral to the observed catalysis. Mechanistic insights gleaned from para-hydrogen induced polarization (PHIP) transfer NMR studies revealed that the pairwise hydrogenation of nitriles proceeded through a Co(I/III) redox process.

13.
Inorg Chem ; 56(9): 4852-4863, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28394119

ABSTRACT

The derivatization of the imino-functionalized tris(pyrrolylmethyl)amine ligand framework, N(XpiR)3 (XLR; X = H, Br; R = cyclohexyl (Cy), phenyl (Ph), 2,6- diisopropylphenyl (DIPP)), is reported. Modular ligand synthesis allows for facile modification of both the primary and secondary coordination sphere electronics. The iron(II)-hydroxo complexes, N(XpiR)(XafaR)2Fe(II)OH (XLRFeIIOH), are synthesized to establish the impact of the ligand modifications on the complexes' electronic properties, including their chemical and electrochemical oxidation. Cyclic voltammetry demonstrates that the Fe(II/III) redox couple spans a 400 mV range across the series. The origin of the shifted potential is explained based on spectroscopic, structural, and theoretical analyses of the iron(II) and iron(III) compounds.

14.
Science ; 354(6313): 741-743, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27846604

ABSTRACT

Nitrate and perchlorate have considerable use in technology, synthetic materials, and agriculture; as a result, they have become pervasive water pollutants. Industrial strategies to chemically reduce these oxyanions often require the use of harsh conditions, but microorganisms can efficiently reduce them enzymatically. We developed an iron catalyst inspired by the active sites of nitrate reductase and (per)chlorate reductase enzymes. The catalyst features a secondary coordination sphere that aids in oxyanion deoxygenation. Upon reduction of the oxyanions, an iron(III)-oxo is formed, which in the presence of protons and electrons regenerates the catalyst and releases water.


Subject(s)
Biocatalysis , Iron/chemistry , Nitrate Reductases/chemistry , Nitrates/chemistry , Oxidoreductases/chemistry , Perchlorates/chemistry , Catalytic Domain , Oxidation-Reduction
15.
J Am Chem Soc ; 138(41): 13700-13705, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27709917

ABSTRACT

The reactivity of a CoI-H2 complex was extended toward the semihydrogenation of internal alkynes. Under ambient temperatures and moderate pressures of H2, a broad scope of alkynes were semihydrogenated using a CoI-N2 precatalyst, resulting in the formation of trans-alkene products. Furthermore, mechanistic studies using 1H, 2H, and para-hydrogen induced polarization (PHIP) transfer NMR spectroscopy revealed cis-hydrogenation of the alkyne occurs first. The Co-mediated alkene isomerization afforded the E-selective products from a broad group of alkynes with good yields and E/Z selectivity.

16.
J Am Chem Soc ; 138(36): 11907-13, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27569420

ABSTRACT

The synthesis of a cobalt dihydrogen Co(I)-(H2) complex prepared from a Co(I)-(N2) precursor supported by a monoanionic pincer bis(carbene) ligand, (Mes)CCC ((Mes)CCC = bis(mesityl-benzimidazol-2-ylidene)phenyl), is described. This species is capable of H2/D2 scrambling and hydrogenating alkenes at room temperature. Stoichiometric addition of HCl to the Co(I)-(N2) cleanly affords the Co(III) hydridochloride complex, which, upon the addition of Cp2ZrHCl, evolves hydrogen gas and regenerates the Co(I)-(N2) complex. Furthermore, the catalytic olefin hydrogenation activity of the Co(I) species was studied by using multinuclear and parahydrogen (p-H2) induced polarization (PHIP) transfer NMR studies to elucidate catalytically relevant intermediates, as well as to establish the role of the Co(I)-(H2) in the Co(I)/Co(III) redox cycle.

17.
J Am Chem Soc ; 138(13): 4290-3, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27014933

ABSTRACT

This communication describes the two-electron oxidation of ((DIPP)CCC)NiX ((DIPP)CCC = bis(diisopropylphenyl-benzimidazol-2-ylidene)phenyl); X = Cl or Br) with halogen and halogen surrogates to form ((DIPP)CCC)NiX3. These complexes represent a rare oxidation state of nickel, as well as an unprecedented reaction pathway to access these species through Br2 and halogen surrogate (benzyltrimethylammonium tribromide). The Ni(IV) complexes have been characterized by a suite of spectroscopic techniques and can readily reduce to the Ni(II) counterpart, allowing for cycling between the Ni(II)/Ni(IV) oxidation states.

18.
Dalton Trans ; 45(24): 9805-11, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-26778113

ABSTRACT

The synthesis and characterization of a series of cobalt complexes featuring a pincer bis(carbene) ligand of the meta-phenylene-bridged bis-N-heterocyclic carbene ((Ar)CCC, Ar = 2,6-diispropylphenyl or mesityl) are reported. Cleavage of the aryl C-H bond of the ligand was achieved in a one-pot metalation procedure using Co(N(SiMe3)2)2(py)2, an equivalent of exogenous base, and trityl chloride to form the ((DIPP)CCC)CoCl2py complex. This species could be reduced to the Co(ii) and Co(i)-N2 molecules with the appropriate equivalents of reductant. Subsequent generation of ((Mes)CCC)Co(I-III) derivatives with the mesityl ligand proceeded in good yields. A suite of characterization techniques and the interconversion between all three oxidation states of the cobalt complexes is described.

19.
Dalton Trans ; 44(22): 10377-84, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-25970267

ABSTRACT

The syntheses of M(ii) (M = Mn, Fe, Co) complexes bearing the tris(5-cycloaminoazafulvene-2-methyl)amine (H3N(afa(Cy))3) ligand in its datively coordinated, tautomeric form is reported. The metal-azafulvene complexes [N(afa(Cy))3M](OTf)2 are generated in high yields, featuring a secondary coordination sphere composed of amino moieties from the ligand platform. To investigate the ability of the hydrogen bonding network to support hydrogen-bond accepting, coordinating anions, pseudohalide derivatives, [N(afa(Cy))3MX](OTf) (X = NCS(-), NCO(-), N3(-)) were synthesized by exposure of [N(afa(Cy))3M](OTf)2 to an equivalent of the corresponding salt, [((n)Bu)4N](X). Structural characterization of the products reveals two isomorphs of the desired species. One complex features a single hydrogen bonding interaction with the pseudohalide, while the second compound has two H-bonds from the secondary coordination sphere to the coordinated anion. These complexes showcase the structural and electron flexibility of the ligand platform, presenting a scaffold capable of accessing a different number of hydrogen bonds for stabilizing a given moiety.


Subject(s)
Aza Compounds/chemistry , Cobalt/chemistry , Coordination Complexes/chemistry , Iron/chemistry , Manganese/chemistry , Ammonium Compounds/chemistry
20.
Chem Commun (Camb) ; 51(25): 5310-3, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25745671

ABSTRACT

Complexes containing manganese-oxygen bonds have been implicated in a variety of biological and synthetic processes. Herein, we describe the synthesis of a family of stable, high-spin trigonal bipyramidal manganese complexes of the electronically flexible ligand tris(5-cyclohexylimino-pyrrol-2-ylmethyl)amine [H3N(pi(Cy))3] featuring apical water, hydroxyl, and oxo ligands. Terminal Mn(III)-O complexes are rare and the formation of this species was achieved from a variety of reagents including O2, PhIO and NO2(-). Described herein is the preparation, structural and electronic properties of these manganese complexes.


Subject(s)
Manganese/chemistry , Organometallic Compounds/chemical synthesis , Oxygen/chemistry , Electrons , Molecular Conformation , Organometallic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...