Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 117: 399-411, 2024 03.
Article in English | MEDLINE | ID: mdl-38309639

ABSTRACT

BACKGROUND: Autoantibodies against the potassium voltage-gated channel subfamily A member 2 (KCNA2) have been described in a few cases of neuropsychiatric disorders, but their diagnostic and pathophysiological role is currently unknown, imposing challenges to medical practice. DESIGN / METHODS: We retrospectively collected comprehensive clinical and paraclinical data of 35 patients with KCNA2 IgG autoantibodies detected in cell-based and tissue-based assays. Patients' sera and cerebrospinal fluid (CSF) were used for characterization of the antigen, clinical-serological correlations, and determination of IgG subclasses. RESULTS: KCNA2 autoantibody-positive patients (n = 35, median age at disease onset of 65 years, range of 16-83 years, 74 % male) mostly presented with cognitive impairment and/or epileptic seizures but also ataxia, gait disorder and personality changes. Serum autoantibodies belonged to IgG3 and IgG1 subclasses and titers ranged from 1:32 to 1:10,000. KCNA2 IgG was found in the CSF of 8/21 (38 %) patients and in the serum of 4/96 (4.2 %) healthy blood donors. KCNA2 autoantibodies bound to characteristic anatomical areas in the cerebellum and hippocampus of mammalian brain and juxtaparanodal regions of peripheral nerves but reacted exclusively with intracellular epitopes. A subset of four KCNA2 autoantibody-positive patients responded markedly to immunotherapy alongside with conversion to seronegativity, in particular those presenting an autoimmune encephalitis phenotype and receiving early immunotherapy. An available brain biopsy showed strong immune cell invasion. KCNA2 autoantibodies occurred in less than 10 % in association with an underlying tumor. CONCLUSION: Our data suggest that KCNA2 autoimmunity is clinically heterogeneous. Future studies should determine whether KCNA2 autoantibodies are directly pathogenic or develop secondarily. Early immunotherapy should be considered, in particular if autoantibodies occur in CSF or if clinical or diagnostic findings suggest ongoing inflammation. Suspicious clinical phenotypes include autoimmune encephalitis, atypical dementia, new-onset epilepsy and unexplained epileptic seizures.


Subject(s)
Autoimmune Diseases of the Nervous System , Autoimmunity , Encephalitis , Hashimoto Disease , Animals , Humans , Male , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Female , Retrospective Studies , Autoantibodies , Seizures , Mammals , Kv1.2 Potassium Channel
2.
Brain Behav Immun Health ; 33: 100678, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37692096

ABSTRACT

Anti-neuronal autoantibodies can be transplacentally transferred during pregnancy and may cause detrimental effects on fetal development. It is unclear whether autoantibodies against synapsin-I, one of the most abundant synaptic proteins, are associated with developmental abnormalities in humans. We recruited a cohort of 263 pregnant women and detected serum synapsin-I IgG autoantibodies in 13.3% using cell-based assays. Seropositivity was strongly associated with abnormalities of fetal development including structural defects, intrauterine growth retardation, amniotic fluid disorders and neuropsychiatric developmental diseases in previous children (odds ratios of 3-6.5). Autoantibodies reached the fetal circulation and were mainly of IgG1/IgG3 subclasses. They bound to conformational and linear synapsin-I epitopes, five distinct epitopes were identified using peptide microarrays. The findings indicate that synapsin-I autoantibodies may be clinically useful biomarkers or even directly participate in the disease process of neurodevelopmental disorders, thus being potentially amenable to antibody-targeting interventional strategies in the future.

3.
Brain Behav Immun ; 109: 139-143, 2023 03.
Article in English | MEDLINE | ID: mdl-36657623

ABSTRACT

BACKGROUND: Neurological symptoms, in particular cognitive deficits, are common in post-COVID-19 syndrome (PCS). There is no approved therapy available, and the underlying disease mechanisms are largely unknown. Besides others, autoimmune processes may play a key role. DESIGN: We here present data of a prospective study conducted between September 2020 and December 2021 and performed at two German University hospitals with specialized Neurology outpatient clinics. Fifty patients with self-reported cognitive deficits as main complaint of PCS and available serum and CSF samples were included. Cell-based assays and indirect immunofluorescence on murine brain sections were used to detect autoantibodies against intracellular and surface antigens in serum and CSF and analyzed for associations with cognitive screening assessment. RESULTS: Clearly abnormal cognitive status (MoCA ≤ 25/30 points) was only seen in 18/50 patients with self-reported cognitive deficits. Most patients (46/50) had normal routine CSF parameters. anti-neuronal autoantibodies were found in 52 % of all patients: n = 9 in serum only, n = 3 in CSF only and n = 14 in both, including those against myelin, Yo, Ma2/Ta, GAD65 and NMDA receptor, but also a variety of undetermined epitopes on brain sections. These included cerebral vessel endothelium, Purkinje neurons, granule cells, axon initial segments, astrocytic proteins and neuropil of basal ganglia or hippocampus as well as a formerly unknown perinuclear rim pattern. Pathological MoCA results were associated with the presence of anti-neuronal antibodies in CSF (p = 0.0004). CONCLUSIONS: Autoantibodies targeting brain epitopes are common in PCS patients and strongly associate with pathological cognitive screening tests, in particular when found in CSF. Several underlying autoantigens still await experimental identification. Further research is needed to inform on the clinical relevance of these autoantibodies, including controlled studies that explore the potential efficacy of antibody-depleting immunotherapy in PCS.


Subject(s)
COVID-19 , Cognitive Dysfunction , Humans , Mice , Animals , Autoantibodies , Post-Acute COVID-19 Syndrome , Prospective Studies , Brain
4.
Biol Psychiatry ; 92(4): 261-274, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35606187

ABSTRACT

BACKGROUND: Autoimmune psychosis may be caused by well-characterized anti-neuronal autoantibodies, such as those against the NMDA receptor. However, the presence of additional anti-central nervous system (CNS) autoantibodies in these patients has not been systematically assessed. METHODS: Serum and cerebrospinal fluid (CSF) from patients with schizophreniform and affective syndromes were analyzed for immunoglobulin G anti-CNS autoantibodies using tissue-based assays with indirect immunofluorescence on unfixed murine brain tissue as part of an extended routine clinical practice. After an initial assessment of patients with red flags for autoimmune psychosis (n = 30), tissue-based testing was extended to a routine procedure (n = 89). RESULTS: Based on the findings from all 119 patients, anti-CNS immunoglobulin G autoantibodies against brain tissue were detected in 18% (n = 22) of patients (serum 9%, CSF 18%) following five principal patterns: 1) against vascular structures, most likely endothelial cells (serum 3%, CSF 8%); 2) against granule cells in the cerebellum and/or hippocampus (serum 4%, CSF 6%); 3) against myelinated fibers (serum 2%, CSF 2%); 4) against cerebellar Purkinje cells (serum 0%, CSF 2%); and 5) against astrocytes (serum 1%, CSF 1%). The patients with novel anti-CNS autoantibodies showed increased albumin quotients (p = .026) and white matter changes (p = .020) more frequently than those who tested negative for autoantibodies. CONCLUSIONS: The study demonstrates five novel autoantibody-binding patterns on brain tissue of patients with schizophreniform and affective syndromes. CSF yielded positive findings more frequently than serum analysis. The frequency and spectrum of autoantibodies in these patient groups may be broader than previously thought.


Subject(s)
Autoantibodies , Endothelial Cells , Animals , Brain , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Immunoglobulin G , Mice , Mood Disorders
SELECTION OF CITATIONS
SEARCH DETAIL
...