Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Lett ; 27(5): e14438, 2024 May.
Article in English | MEDLINE | ID: mdl-38783567

ABSTRACT

Species' persistence in increasingly variable climates will depend on resilience against the fitness costs of environmental stochasticity. Most organisms host microbiota that shield against stressors. Here, we test the hypothesis that, by limiting exposure to temporally variable stressors, microbial symbionts reduce hosts' demographic variance. We parameterized stochastic population models using data from a 14-year symbiont-removal experiment including seven grass species that host Epichloë fungal endophytes. Results provide novel evidence that symbiotic benefits arise not only through improved mean fitness, but also through dampened inter-annual variance. Hosts with "fast" life-history traits benefited most from symbiont-mediated demographic buffering. Under current climate conditions, contributions of demographic buffering were modest compared to benefits to mean fitness. However, simulations of increased stochasticity amplified benefits of demographic buffering and made it the more important pathway of host-symbiont mutualism. Microbial-mediated variance buffering is likely an important, yet cryptic, mechanism of resilience in an increasingly variable world.


Subject(s)
Epichloe , Stochastic Processes , Symbiosis , Epichloe/physiology , Poaceae/microbiology , Poaceae/physiology , Endophytes/physiology , Models, Biological , Microbiota
2.
Tree Physiol ; 40(9): 1178-1191, 2020 08 29.
Article in English | MEDLINE | ID: mdl-32478381

ABSTRACT

Effects of climate warming on tree growth and physiology may be driven by direct thermal effects and/or by changes in soil moisture. Dioecious tree species usually show sexual spatial segregation along abiotic gradients; however, few studies have assessed the sex-specific responses to warming in dioecious trees. We investigated the sex-specific responses in growth, photosynthesis, nonstructural carbohydrate (NSC), water-use efficiency and whole-plant hydraulic conductance (KP) of the dioecious tree species Populus cathayana Rehd. under +4 °C elevated temperature with and without supplemental water. For both sexes, high-temperature treatments significantly decreased growth (height and biomass), photosynthetic rate (A), the ratio of A to dark respiration rate, stomatal conductance (gs), transpiration rate, NSC, leaf water potential and KP, but increased water-use efficiency (estimated from carbon isotope composition). Under warming with supplemental water, most traits of females did not change relative to ambient conditions, but traits of males decreased, resulting in greater sexual differences. Females showed a lower KP, and their gs and A responded more steeply with water-related traits than males. These results show that the effect of summer warming on growth and photosynthesis was driven mainly by soil moisture in female P. cathayana, while male performance was mainly related to temperature. Females may experience less thermal stress than males due to flexible water balance strategy via stomata regulation and water use.


Subject(s)
Populus , Thermotolerance , Droughts , Female , Male , Photosynthesis , Plant Leaves , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...