Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(3): e0300866, 2024.
Article in English | MEDLINE | ID: mdl-38512951

ABSTRACT

The Male Annihilation Technique (also termed the Male Attraction Technique; "MAT") is often used to eradicate pestiferous tephritid fruit flies, such as Bactrocera dorsalis (Hendel). MAT involves the application of male-specific attractants combined with an insecticide in spots or stations across an area to reduce the male population to such a low level that suppression or eradication is achieved. Currently, implementations of MAT in California and Florida targeting B. dorsalis utilize the male attractant methyl eugenol (ME) accompanied with a toxicant, such as spinosad, mixed into a waxy, inert emulsion STATIC ME (termed here "SPLAT-MAT-ME"). While highly effective against ME-responding species, such applications are expensive owing largely to the high cost of the carrier matrix and labor for application. Until recently the accepted protocol called for the application of approximately 230 SPLAT-MAT-ME spots per km2; however, findings from Hawaii suggest a lower density may be more effective. The present study adopted the methods of that earlier work and estimated kill rates of released B. dorsalis under varying spot densities in areas of California and Florida that have had recent incursions of this invasive species. Specifically, we directly compared trap captures of sterilized marked B. dorsalis males released in different plots under three experimental SPLAT-MAT-ME densities (50, 110, and 230 per km2) in Huntington Beach, CA; Anaheim, CA; and Sarasota-Bradenton, FL. The plots with a density of 110 sites per km2 had a significantly higher recapture proportion than plots with 50 or 230 sites per km2. This result suggests that large amounts of male attractant may reduce the ability of males to locate the source of the odor, thus lowering kill rates and the effectiveness of eradication efforts. Eradication programs would directly benefit from reduced costs and improved eradication effectiveness by reducing the application density of SPLAT-MAT-ME.


Subject(s)
Eugenol/analogs & derivatives , Insecticides , Tephritidae , Animals , Male , Insect Control/methods , Insecticides/pharmacology , Drosophila
2.
J Vis Exp ; (197)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37578242

ABSTRACT

Fruit flies of the Tephritidae family are among the most destructive and invasive agricultural pests in the world. Many countries undertake expensive eradication programs to eliminate incipient populations. During eradication programs, a concerted effort is made to detect larvae, as this strongly indicates a breeding population and helps establish the spatial extent of the infestation. The detection of immature life stages triggers additional control and regulatory actions to contain and prevent any further spread of the pest. Traditionally, larval detection is accomplished by cutting individual host fruits and examining them visually. This method is labor intensive, as only a limited number of fruit can be processed, and the probability of missing a larva is high. An extraction technique that combines i) mushing host fruit in a plastic bag, ii) straining pulp through a series of sieves, iii) placing retained pulp in a brown sugar water solution, and iv) collecting larvae that float to the surface was tested. The method was evaluated in Florida with field-collected guava naturally infested by Anastrepha suspensa. To mimic low populations more representative of a fruit fly eradication program, mangos and papaya in Hawaii were infested with a known, low number of Bactrocera dorsalis larvae. The applicability of the method was tested in the field on guava naturally infested by B. dorsalis to evaluate the method under conditions experienced by workers during an emergency fruit fly program. In both field and laboratory trials, mushing and sieving the pulp was more efficient (required less time) and more sensitive (more larvae found) than cutting fruit. Floating the pulp in brown sugar water solution helped detect earlier instar larvae. Mushing and sieving fruit pulp of important tephritid hosts may increase the probability of detecting larvae during emergency programs.

3.
Beilstein J Org Chem ; 12: 2032-2037, 2016.
Article in English | MEDLINE | ID: mdl-27829908

ABSTRACT

Efficient one-pot Ugi-Smiles couplings are reported for the use of furyl-substituted aldehyde components. In the presence of these heterocyclic aldehydes, reactions tolerated variations in amine components and led to either isolated N-arylamide Ugi-Smiles adducts or N-arylepoxyisoindolines, products of tandem Ugi-Smiles Diels-Alder cyclizations, in moderate yields. A thienyl-substituted aldehyde was also a competent component for Ugi-Smiles adduct formation.

4.
J Econ Entomol ; 108(2): 694-700, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26470180

ABSTRACT

Ammonia and its derivatives are used by female fruit flies (Diptera: Tephritidae) as volatile cues to locate protein-rich food needed to produce their eggs. This need for external protein sources has led to the development of behaviorally based control strategies such as food-based lures and insecticidal baits targeting pestiferous fruit fly species. In field cage studies conducted in Hawaii, we examined the behavioral response of laboratory-reared male and female Mediterranean fruit fly, Ceratitis capitata (Wiedemann), to seven commercially available protein baits and to beer waste, a relatively inexpensive and readily available substance. Each material was tested alone or in combination with either ammonium acetate or ammonium carbonate. For the majority of baits evaluated, the presence of ammonium acetate, but not ammonium carbonate, elicited a significantly greater level of response of female C. capitata compared with the protein baits alone. The addition of ammonium acetate to selected baits increased bait attractiveness to a level comparable with that elicited by the most widely used spinosad-based protein bait, GF-120. Our findings indicate that the addition of ammonium acetate to commercially available proteinaceous baits and to beer waste can greatly improve their attractiveness to C. capitata, potentially increasing the bait's effectiveness for fruit fly monitoring and suppression.


Subject(s)
Acetates/pharmacology , Behavior, Animal/drug effects , Carbonates/pharmacology , Ceratitis capitata/drug effects , Insect Control , Animals , Beer , Female , Male , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...