Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(16): 7431-7444, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31310125

ABSTRACT

A series of 2-amino-2,3-dihydro-1H-indene-5-carboxamides were designed and synthesized as new selective discoidin domain receptor 1 (DDR1) inhibitors. One of the representative compounds, 7f, bound with DDR1 with a Kd value of 5.9 nM and suppressed the kinase activity with an half-maximal (50%) inhibitory concentration value of 14.9 nM. 7f potently inhibited collagen-induced DDR1 signaling and epithelial-mesenchymal transition, dose-dependently suppressed colony formation of pancreatic cancer cells, and exhibited promising in vivo therapeutic efficacy in orthotopic mouse models of pancreatic cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Discoidin Domain Receptor 1/antagonists & inhibitors , Neoplasms, Experimental/prevention & control , Pancreatic Neoplasms/prevention & control , Xenograft Model Antitumor Assays/methods , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Discoidin Domain Receptor 1/metabolism , Drug Design , Epithelial-Mesenchymal Transition/drug effects , Humans , Male , Mice, Inbred C57BL , Neoplasms, Experimental/metabolism , Pancreatic Neoplasms/metabolism , Rats, Sprague-Dawley , Tumor Stem Cell Assay
2.
J Med Chem ; 61(17): 7977-7990, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30075624

ABSTRACT

Discoidin-domain receptors 1 and 2 (DDR1 and DDR2) are new potential targets for anti-inflammatory-drug discovery. A series of heterocycloalkynylbenzimides were designed and optimized to coinhibit DDR1 and DDR2. One of the most promising compounds, 5n, tightly bound to DDR1 and DDR2 proteins with Kd values of 7.9 and 8.0 nM; potently inhibited the kinases with IC50 values of 9.4 and 20.4 nM, respectively; and was significantly less potent for a panel of 403 wild-type kinases at 1.0 µM. DDR1- and DDR2-kinase inhibition by 5n was validated by Western-blotting analysis in primary human lung fibroblasts. The compound also dose-dependently inhibited lipopolysaccharide (LPS)-induced interleukin 6 (IL-6) release in vitro and exhibited promising in vivo anti-inflammatory effects in an LPS-induced-acute-lung-injury (ALI) mouse model. Compound 5n may serve as a lead compound for new anti-inflammatory drug discovery.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Discoidin Domain Receptor 1/antagonists & inhibitors , Discoidin Domain Receptor 2/antagonists & inhibitors , Drug Design , Pneumonia/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Humans , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Pneumonia/chemically induced , Pneumonia/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...