Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 430(7000): 648-50, 2004 Aug 05.
Article in English | MEDLINE | ID: mdl-15295592

ABSTRACT

Over the six years since the discovery of the gamma-ray burst GRB 980425, which was associated with the nearby (distance approximately 40 Mpc) supernova 1998bw, astronomers have debated fiercely the nature of this event. Relative to bursts located at cosmological distance (redshift z approximately 1), GRB 980425 was under-luminous in gamma-rays by three orders of magnitude. Radio calorimetry showed that the explosion was sub-energetic by a factor of 10. Here we report observations of the radio and X-ray afterglow of the recent GRB 031203 (refs 5-7), which has a redshift of z = 0.105. We demonstrate that it too is sub-energetic which, when taken together with the low gamma-ray luminosity, suggests that GRB 031203 is the first cosmic analogue to GRB 980425. We find no evidence that this event was a highly collimated explosion viewed off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows. We expect intensive follow-up of faint bursts with smooth gamma-ray light curves (common to both GRB 031203 and 980425) to reveal a large population of such events.

2.
Nature ; 426(6963): 154-7, 2003 Nov 13.
Article in English | MEDLINE | ID: mdl-14614498

ABSTRACT

Past studies have suggested that long-duration gamma-ray bursts have a 'standard' energy of E(gamma) approximately 10(51) erg in the ultra-relativistic ejecta, after correcting for asymmetries in the explosion ('jets'). But a group of sub-energetic bursts, including the peculiar GRB980425 associated with the supernova SN1998bw (E(gamma) approximately 10(48) erg), has recently been identified. Here we report radio observations of GRB030329 that allow us to undertake calorimetry of the explosion. Our data require a two-component explosion: a narrow (5 degrees opening angle) ultra-relativistic component responsible for the gamma-rays and early afterglow, and a wide, mildly relativistic component that produces the radio and optical afterglow more than 1.5 days after the explosion. The total energy release, which is dominated by the wide component, is similar to that of other gamma-ray bursts, but the contribution of the gamma-rays is energetically minor. Given the firm link of GRB030329 with SN2003dh, our result indicates a common origin for cosmic explosions in which, for reasons not yet understood, the energy in the highest-velocity ejecta is extremely variable.

3.
Nature ; 423(6942): 844-7, 2003 Jun 19.
Article in English | MEDLINE | ID: mdl-12815424

ABSTRACT

Past studies of cosmological gamma-ray bursts (GRBs) have been hampered by their extreme distances, resulting in faint afterglows. A nearby GRB could potentially shed much light on the origin of these events, but GRBs with a redshift z

4.
Nature ; 422(6929): 284-6, 2003 Mar 20.
Article in English | MEDLINE | ID: mdl-12646914

ABSTRACT

Observations of the long-lived emission--or 'afterglow'--of long-duration gamma-ray bursts place them at cosmological distances, but the origin of these energetic explosions remains a mystery. Observations of optical emission contemporaneous with the burst of gamma-rays should provide insight into the details of the explosion, as well as into the structure of the surrounding environment. One bright optical flash was detected during a burst, but other efforts have produced negative results. Here we report the discovery of the optical counterpart of GRB021004 only 193 seconds after the event. The initial decline is unexpectedly slow and requires varying energy content in the gamma-ray burst blastwave over the course of the first hour. Further analysis of the X-ray and optical afterglow suggests additional energy variations over the first few days.

SELECTION OF CITATIONS
SEARCH DETAIL
...