Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Water Res ; 165: 114983, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31437633

ABSTRACT

Recent advances in mechanistic modeling of vegetated filter strips (VFS) have made it possible to incorporate VFS mitigation into environmental exposure assessments (EEAs). However, outside of fixed efficiency approaches, there are no widely adopted and standardized procedures for incorporating VFS quantitative mitigation into long-term, higher-tier EEAs. A source of hesitation involves the use of empirical equations for predicting pesticide trapping by the VFS. A recent study evaluated existing empirical equations and a mechanistic mass-balance approach using the most extensive field database available of VFS pesticide efficiency from single-event storms. That study concluded that an updated empirical equation (Sabbagh equation) and a mechanistic mass-balance approach performed reasonably well. The objective of this research was to study the effect of upscaling the VFS trapping equations from single events into long-term EEAs. The U.S. EPA Pesticide in Water Calculator (PWC) model linked with the Vegetative Filter Strip MODeling system (VFSMOD) long-term EEA modeling framework (30 yr) was updated to incorporate the alternative trapping equations and tested VFS mitigation results under contrasting agroecological settings with varying erosion/sediment transport conditions. Differences in both acute and chronic 90th percentile estimated environmental exposure concentrations (EECs) were relatively small when comparing predictions using the four pesticide trapping equations. A global sensitivity analysis (GSA) also indicated that selection of a specific trapping equation for predicting EECs was less important than other important input factors such as the VFS length and pesticide properties. However, in terms of the percent reductions in EECs, the choice of pesticide trapping equation was as important as the VFS length. This research builds upon the conclusion of previous single-event studies that the mechanistic mass-balance and refit Sabbagh empirical equation were both valid for EEAs. The mass balance approach represents a reasonable option for regulatory agencies that prefer mechanistic approaches.


Subject(s)
Pesticides , Environmental Exposure
2.
Sci Total Environ ; 619-620: 977-987, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29734643

ABSTRACT

Understanding and simulating the fate and transport of pesticides from a field to adjacent receiving water bodies is critical for estimating long-term environmental exposure concentrations (EECs) in regulatory higher-tier environmental exposure assessments (EEA). The potential of field mitigation practices like vegetative filter strips (VFS) to reduce pesticide pollution is receiving increasing attention. Previous research has proposed a modeling framework that links the US Environmental Protection Agency's (US-EPA) PRZM/EXAMS higher-tier EEA with a process-based VFS model (VFSMOD). This framework was updated to consider degradation and carryover of pesticide residue trapped in the VFS. However, there is disagreement on pesticide degradation assumptions among different regional EEA regulations (i.e. US or European Union), and in particular on how temperature and soil moisture dynamics may affect EECs. This research updated the VFS modeling framework to consider four degradation assumptions and determine if VFS residues and/or EECs differed with each assumption. Two model pesticides (mobile-labile and immobile-persistent) were evaluated for three distinct agroecological scenarios (continental row-crop agriculture, wet maritime agriculture, and dry Mediterranean intensive horticulture) with receiving water bodies and VFS lengths from 0 to 9m. The degradation assumption was important in long-term assessments to predict VFS pesticide residues (statistically different at p<0.01). However, due to the relatively small contribution of residues on the total pesticide mass moving through the VFS, degradation assumptions had a negligible impact on EECs. This indicates that, while important differences exist between EU or US EEAs, the choice of pesticide degradation assumption is not a main source of these differences.

3.
PLoS One ; 12(8): e0181924, 2017.
Article in English | MEDLINE | ID: mdl-28792541

ABSTRACT

Switchgrass (Panicum virgatum L.) has attracted attention as a promising second generation biofuel feedstock. Both existing grasslands and marginal croplands have been suggested as targets for conversion to switchgrass, but the resulting production potentials and hydrologic impacts are not clear. The objectives of this study were to model switchgrass production on existing grasslands (scenario-I) and on marginal croplands that have severe to very severe limitations for crop production (scenario-II) and to evaluate the effects on evapotranspiration (ET) and streamflow. The Soil and Water Assessment Tool (SWAT) was applied to the 1063 km2 Skeleton Creek watershed in north-central Oklahoma, a watershed dominated by grasslands (35%) and winter wheat cropland (47%). The simulated average annual yield (2002-2011) for rainfed Alamo switchgrass for both scenarios was 12 Mg ha-1. Yield varied spatially under scenario-I from 6.1 to 15.3 Mg ha-1, while under scenario-II the range was from 8.2 to 13.8 Mg ha-1. Comparison of average annual ET and streamflow between the baseline simulation (existing land use) and scenario-I showed that scenario-I had 5.6% (37 mm) higher average annual ET and 27.7% lower streamflow, representing a 40.7 million m3 yr-1 streamflow reduction. Compared to the baseline, scenario-II had only 0.5% higher ET and 3.2% lower streamflow, but some monthly impacts were larger. In this watershed, the water yield reduction per ton of biomass production (i.e. hydrologic cost-effectiveness ratio) was more than 5X greater under scenario-I than under scenario-II. These results suggest that, from a hydrologic perspective, it may be preferable to convert marginal cropland to switchgrass production rather than converting existing grasslands.


Subject(s)
Agriculture/economics , Grassland , Panicum , Rivers , Water , Biofuels/economics , Biomass , Calibration , Computer Simulation , Conservation of Natural Resources , Cost-Benefit Analysis , Hydrology , Oklahoma , Panicum/growth & development , Panicum/metabolism , Plant Transpiration , Rain , Water/metabolism
4.
J Environ Manage ; 181: 602-614, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27429360

ABSTRACT

Sediment and phosphorus (P) are two primary pollutants of surface waters. Many studies have investigated loadings from upland sources or even streambed sediment, but in many cases, limited to no data exist to determine sediment and P loading from streambanks on a watershed scale. The objectives of this paper are to review the current knowledge base on streambank erosion and failure mechanisms, streambank P concentrations, and streambanks as P loading sources and then also to identify future research needs on this topic. In many watersheds, long-term loading of soil and associated P to stream systems has created a source of eroded soil and P that may interact with streambank sediment and be deposited in floodplains downstream. In many cases streambanks were formed from previously eroded and deposited alluvial material and so the resulting soils possess unique physical and chemical properties from adjacent upland soils. Streambank sediment and P loading rates depend explicitly on the rate of streambank migration and the concentration of P stored within bank materials. From the survey of literature, previous studies report streambank total P concentrations that consistently exceeded 250 mg kg(-1) soil. Only a few studies also reported water soluble or extractable P concentrations. More research should be devoted to understanding the dynamic processes between different P pools (total P versus bioavailable P), and sorption or desorption processes under varying hydraulic and stream chemistry conditions. Furthermore, the literature reported that streambank erosion and failure and gully erosion were reported to account for 7-92% of the suspended sediment load within a channel and 6-93% of total P. However, significant uncertainty can occur in such estimates due to reach-scale variability in streambank migration rates and future estimates should consider the use of uncertainty analysis approaches. Research is also needed on the transport rates of dissolved and sediment-bound P through the entire stream system of a watershed to identify critical upland and/or near-stream conservation practices. Extensive monitoring of the impact of restoration/rehabilitation efforts on reducing sediment and P loading are limited. From an application standpoint, streambank P contributions to streams should be more explicitly accounted for in developing total maximum daily loads in watersheds.


Subject(s)
Geologic Sediments/chemistry , Phosphorus/analysis , Rivers/chemistry , Water Pollutants, Chemical/chemistry , Environmental Monitoring/methods , Humans
5.
Chemosphere ; 139: 410-21, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26218348

ABSTRACT

Vegetative filter strips (VFS) are a widely adopted practice for limiting pesticide transport from adjacent fields to receiving waterbodies. The efficacy of VFS depends on site-specific input factors. To elucidate the complex and non-linear relationships among these factors requires a process-based modeling framework. Previous research proposed linking existing higher-tier environmental exposure models with a well-tested VFS model (VFSMOD). However, the framework assumed pesticide mass stored in the VFS was not available for transport in subsequent storm events. A new pesticide mass balance component was developed to estimate surface pesticide residue trapped in the VFS and its degradation between consecutive runoff events. The influence and necessity of the updated framework on acute and chronic estimated environmental concentrations (EECs) and percent reductions in EECs were investigated across three, 30-year U.S. EPA scenarios: Illinois corn, California tomato, and Oregon wheat. The updated framework with degradation predicted higher EECs than the existing framework without degradation for scenarios with greater sediment transport, longer VFS lengths, and highly sorbing and persistent pesticides. Global sensitivity analysis (GSA) assessed the relative importance of mass balance and degradation processes in the context of other input factors like VFS length (VL), organic-carbon sorption coefficient (Koc), and soil and water half-lives. Considering VFS pesticide residue and degradation was not important if single, large runoff events controlled transport, as is typical for higher percentiles considered in exposure assessments. Degradation processes become more important when considering percent reductions in acute or chronic EECs, especially under scenarios with lower pesticide losses.


Subject(s)
Conservation of Natural Resources/methods , Environmental Exposure/analysis , Environmental Pollutants/chemistry , Models, Theoretical , Pesticide Residues/chemistry , Soil/chemistry
6.
J Environ Qual ; 43(1): 224-34, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25602555

ABSTRACT

Pasture Phosphorus Management Plus (PPM Plus) is a tool that allows nutrient management and conservation planners to evaluate phosphorus (P) loss from agricultural fields. This tool uses a modified version of the widely used Soil and Water Assessment Tool model with a vastly simplified interface. The development of PPM Plus has been fully described in previous publications; in this article we evaluate the accuracy of PPM Plus using 286 field-years of runoff, sediment, and P validation data from runoff studies at various locations in Oklahoma, Texas, Arkansas, and Georgia. Land uses include pasture, small grains, and row crops with rainfall ranging from 630 to 1390 mm yr, with and without animal manure application. PPM Plus explained 68% of the variability in total P loss, 56% of runoff, and 73% of the variability of sediment yield. An empirical model developed from these data using soil test P, total applied P, slope, and precipitation only accounted for 15% of the variability in total P loss, which implies that a process-based model is required to account for the diversity present in these data. PPM Plus is an easy-to-use conservation planning tool for P loss prediction, which, with modification, could be applicable at the regional and national scales.

7.
Chemosphere ; 90(2): 195-202, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22877937

ABSTRACT

Vegetative filter strips (VFS) are proposed for protection of receiving water bodies and aquatic organisms from pesticides in runoff, but there is debate regarding the efficiency and filter size requirements. This debate is largely due to the belief that no quantitative methodology exists for predicting runoff buffer efficiency when conducting acute and/or chronic environmental exposure assessments. Previous research has proposed a modeling approach that links the U.S. Environmental Protection Agency's (EPA's) PRZM/EXAMS with a well-tested process-based model for VFS (VFSMOD). In this research, we apply the modeling framework to determine (1) the most important input factors for quantifying mass reductions of pesticides by VFS in aquatic exposure assessments relative to three distinct U.S. EPA scenarios encompassing a wide range of conditions; (2) the expected range in percent reductions in acute and chronic estimated environmental concentrations (EECs); and (3) the differential influence of VFS when conducting acute versus chronic exposure assessments. This research utilized three, 30-yr U.S. EPA scenarios: Illinois corn, California tomato, and Oregon wheat. A global sensitivity analysis (GSA) method identified the most important input factors based on discrete uniform probability distributions for five input factors: VFS length (VL), organic-carbon sorption coefficient (K(oc)), half-lives in both water and soil phases, and application timing. For percent reductions in acute and chronic EECs, VL and application timing were consistently the most important input factors independent of EPA scenario. The potential ranges in acute and chronic EECs varied as a function of EPA scenario and application timing. Reductions in acute EECs were typically less than percent reductions in chronic EECs because acute exposure was driven primarily by large individual rainfall and runon events. Importantly, generic specification of VFS design characteristics equal across scenarios should be avoided. The revised pesticide assessment modeling framework offers the ability to elucidate the complex and non-linear relationships that can inform targeted VFS design specifications.


Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Restoration and Remediation/methods , Pesticides/analysis , Water Pollutants, Chemical/analysis , Agriculture/methods , Filtration/instrumentation , Models, Chemical , United States , United States Environmental Protection Agency , Water Pollution, Chemical/statistics & numerical data
8.
J Environ Qual ; 40(3): 980-8, 2011.
Article in English | MEDLINE | ID: mdl-21546684

ABSTRACT

Vegetative filter strips (VFS) are commonly used best management practices for removing contaminants from runoff. Additional research is warranted to determine their efficiency and the most appropriate metrics for predicting fecal bacteria reductions. The objective of this research was to determine VFS effectiveness in removing from runoff relative to inflow rate, infiltration capacity, and flow concentration. This research also investigated the presence of in runoff from clean water runon after diluted manure runon events. A laboratory-scale VFS soil box (200 cm long, 100 cm wide, 7.5% slope) was packed with a sandy loam soil. Ten constant-flow VFS experiments were conducted with and without vegetation (8-10 cm ryegrass [ L.]) at low (20-40 cm s), medium (40-60 cm s), and high (85-120 cm s) flow rates and for a full (100 cm) or concentrated (40 cm) VFS flow width to simulate a channelizing flow condition. Two runon events were investigated for each experimental condition: (i) diluted liquid swine manure runon and (ii) clean water runon 48 h afterward. was used as an indicator of fecal contamination and was quantified by the most probable number (MPN) technique. No concentration reductions were observed based on peak outflow concentrations, and only small concentration reductions were observed based on outflow event mean concentrations. The mass reductions ranged from 22 to 71% and were strongly correlated to infiltration or runoff reduction ( = 0.88), which was dependent on the degree of flow concentration. Little to no effect of sedimentation on transport was observed, hypothesized to be due to minimum attachment to sediment particles because the bacteria originated from manure sources. Therefore, the design of VFS for bacteria removal should be based on the infiltration capacity in the VFS and should prevent concentrated flow, which limits total infiltration. The event mean concentrations in clean water runon experiments were between 10 and 100 MPN per 100 mL; therefore, under these conditions, VFS served as a source of residual from previous runon events.


Subject(s)
Agriculture/methods , Escherichia coli/isolation & purification , Feces/microbiology , Plants , Water Pollution, Chemical/prevention & control , Animals , Ecosystem , Soil Pollutants/analysis , Sus scrofa , Water Microbiology , Water Movements
9.
Ground Water ; 49(6): 920-5, 2011.
Article in English | MEDLINE | ID: mdl-21306360

ABSTRACT

A borehole permeameter is well suited for testing saturated hydraulic conductivity (K(sat)) at specific depths in the vadose zone. Most applications of the method involve fine-grained soils that allow hand auguring of test holes and require a small water reservoir to maintain a constant head. In non-cohesive gravels, hand-dug test holes are difficult to excavate, holes are prone to collapse, and large volumes of water are necessary to maintain a constant head for the duration of the test. For coarse alluvial gravels, a direct-push steel permeameter was designed to place a slotted pipe at a specific sampling depth. Measurements can be made at successive depths at the same location. A 3790 L (1000 gallons) trailer-mounted water tank maintained a constant head in the permeameter. Head in the portable tank was measured with a pressure transducer and flow was calculated based on a volumetric rating curve. A U.S. Bureau of Reclamation analytical method was utilized to calculate K(sat). Measurements with the permeameter at a field site were similar to those reported from falling-head tests.


Subject(s)
Models, Theoretical , Water Movements , Environmental Monitoring
10.
Environ Sci Technol ; 44(10): 3839-45, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20394426

ABSTRACT

For pesticides that do not pass higher-level environmental exposure assessments, vegetated filter strips (VFS) are often mandated for use of the compound. However, VFS physiographic characteristics (i.e., width) are not currently specified based on predictive modeling of VFS performance. This has been due to the lack of predictive tools that can explain the wide range of field-reported efficacies. This research hypothesizes that mechanistic modeling of VFS runoff and sediment trapping, integrated with an empirical, regression-based pesticide trapping equation and the U.S. Environmental Protection Agency's (EPA) exposure framework, is able to effectively derive these VFS characteristics. To test this hypothesis, a well-tested process-based model for VFS (VFSMOD) was coupled with the pesticide trapping equation and integrated with EPA's PRZM/EXAMS exposure package. The revised framework was applied to a prescribed U.S. EPA assessment scenario for four hypothetical pesticides: more mobile (i.e., organic carbon (OC) sorption coefficients, K(oc), of 100 L/kg OC) and less mobile (2000 L/kg OC) pesticides that are fast degrading or stable (i.e., 10 or 10,000 d aquatic dissipation half-lives). A nonlinear and complex relationship was observed between pesticide reduction, VFS length, and rainfall plus runon event size. The impact of VFS on environmental exposure concentrations (EECs) was found to be dependent on the pesticide sorption and dissipation half-life and whether calculating an acute or chronic EEC. While acute and chronic EECs were equivalent for stable pesticides, for fast degrading pesticides the acute EEC depended on specific loading events. Therefore, while VFS may reduce the cumulative pesticide loading, a corresponding reduction in the acute EEC may not always be observed. Such results emphasize the need to incorporate physically based modeling of VFS reductions for pesticides that do not pass the current U.S. EPA exposure assessment framework.


Subject(s)
Environmental Exposure , Pesticides/toxicity , Plants , Water Pollutants, Chemical/toxicity , Models, Theoretical
11.
J Environ Qual ; 39(2): 630-41, 2010.
Article in English | MEDLINE | ID: mdl-20176836

ABSTRACT

Vegetative filter strips (VFS) are an environmental management tool used to reduce sediment and pesticide transport from surface runoff. Numerical models of VFS such as the Vegetative Filter Strip Modeling System (VFSMOD-W) are capable of predicting runoff, sediment, and pesticide reduction and can be useful tools to understand the effectiveness of VFS and environmental conditions under which they may be ineffective. However, as part of the modeling process, it is critical to identify input factor importance and quantify uncertainty in predicted runoff, sediment, and pesticide reductions. This research used state-of-the-art global sensitivity and uncertainty analysis tools, a screening method (Morris) and a variance-based method (extended Fourier Analysis Sensitivity Test), to evaluate VFSMOD-W under a range of field scenarios. The three VFS studies analyzed were conducted on silty clay loam and silt loam soils under uniform, sheet flow conditions and included atrazine, chlorpyrifos, cyanazine, metolachlor, pendimethalin, and terbuthylazine data. Saturated hydraulic conductivity was the most important input factor for predicting infiltration and runoff, explaining >75% of the total output variance for studies with smaller hydraulic loading rates ( approximately 100-150 mm equivalent depths) and approximately 50% for the higher loading rate ( approximately 280-mm equivalent depth). Important input factors for predicting sedimentation included hydraulic conductivity, average particle size, and the filter's Manning's roughness coefficient. Input factor importance for pesticide trapping was controlled by infiltration and, therefore, hydraulic conductivity. Global uncertainty analyses suggested a wide range of reductions for runoff (95% confidence intervals of 7-93%), sediment (84-100%), and pesticide (43-100%) . Pesticide trapping probability distributions fell between runoff and sediment reduction distributions as a function of the pesticides' sorption. Seemingly equivalent VFS exhibited unique and complex trapping responses dependent on the hydraulic and sediment loading rates, and therefore, process-based modeling of VFS is required.


Subject(s)
Models, Chemical , Pesticides/analysis , Water Pollution, Chemical/prevention & control , Fourier Analysis , Uncertainty
12.
J Environ Qual ; 38(6): 2412-21, 2009.
Article in English | MEDLINE | ID: mdl-19875797

ABSTRACT

Bacteria transport in soils primarily occurs through soil mesopores and macropores (e.g., biopores and cracks). Field research has demonstrated that biopores and subsurface drains can be hydraulically connected. This research was conducted to investigate the importance of surface connected and disconnected (buried) biopores on Escherichia coli (E. coli) transport when biopores are located near subsurface drains. A soil column (28 by 50 by 95 cm) was packed with loamy sand and sandy loam soils to bulk densities of 1.6 and 1.4 Mg m(-3), respectively, and containing an artificial biopore located directly above a subsurface drain. The sandy loam soil was packed using two different methods: moist soil sieved to 4.0 mm and air-dried soil manually crushed and then sieved to 2.8 mm. A 1-cm constant head was induced on the soil surface in three flushes: (i) water, (ii) diluted liquid swine (Sus scrofa) manure 48 h later, and (iii) water 48 h after the manure. Escherichia coli transport to the drain was observed with either open surface connected or buried biopores. In surface connected biopores, E. coli transport was a function of the soil type and the layer thickness between the end of the biopore and drain. Buried biopores contributed flow and E. coli in the less sorptive soil (loamy sand) and the sorptive soil (sandy loam) containing a wide (i.e., with mesopores) pore space distribution prevalent due to the moist soil packing technique. Biopores provide a mechanism for rapidly transporting E. coli into subsurface drains during flow events.


Subject(s)
Escherichia coli , Soil Microbiology , Soil , Animals , Manure/microbiology , Swine , Water
13.
J Environ Qual ; 38(2): 473-84, 2009.
Article in English | MEDLINE | ID: mdl-19202017

ABSTRACT

For phosphorus (P) transport from upland areas to surface water systems, the primary transport mechanism is typically considered to be surface runoff with subsurface transport assumed negligible. However, certain local conditions can lead to an environment where subsurface transport may be significant. The objective of this research was to determine the potential of subsurface transport of P along streams characterized by cherty or gravel subsoils, especially the impact of preferential flow paths on P transport. At a field site along the Barren Fork Creek in northeastern Oklahoma, a trench was installed with the bottom at the topsoil/alluvial gravel interface. Fifteen piezometers were installed surrounding the trench to monitor flow and transport. In three experiments, water was pumped into the trench from the Barren Fork Creek to maintain a constant head. At the same time, a conservative tracer (Rhodamine WT) and/or potassium phosphate solution were injected into the trench at concentrations at 3 and 100 mg/L for Rhodamine WT and at 100 mg/L for P. Laboratory flow-cell experiments were also conducted on soil material <2 mm in size to determine the effect that flow velocity had on P sorption. Rhodamine WT and P were detected in some piezometers at equivalent concentrations as measured in the trench, suggesting the presence of preferential flow pathways and heterogeneous interaction between streams and subsurface transport pathways, even in nonstructured, coarse gravel soils. Phosphorus transport was retarded in nonpreferential flow paths. Breakthrough times were approximately equivalent for Rhodamine WT and P suggesting no colloidal-facilitated P transport. Results from laboratory flow-cell experiments suggested that higher velocity resulted in less P sorption for the alluvial subsoil. Therefore, differences in flow rates between preferential and nonpreferential flow pathways in the field led to variable sorption. The potential for nutrient subsurface transport shown by this alluvial system has implications regarding management of similar riparian floodplain systems.


Subject(s)
Phosphorus/analysis , Soil/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/analysis , Ecosystem , Oklahoma , Rhodamines/analysis
15.
J Agric Food Chem ; 55(14): 5399-407, 2007 Jul 11.
Article in English | MEDLINE | ID: mdl-17552537

ABSTRACT

This research investigated the impact of modeling atrazine, metolachlor, and isoxaflutole/metabolite transport in artificially subsurface drained sites with temporally discrete rainfall data. Differences in considering rainfall distribution are unknown in regard to estimating agrochemical fluxes in the subsurface. The Root Zone Water Quality Model (RZWQM) simulated pesticide fate and transport at three subsurface drained sites: metolachlor/atrazine field experiment in Baton Rouge, LA (1987), and two isoxaflutole/metabolite field experiments in Allen County and Owen County, Indiana (2000). The modeling assumed linear, equilibrium sorption based on average reported physicochemical and environmental fate properties. Assumed rainfall intensity and duration influenced transport by runoff more than transport by subsurface drainage. As the importance of macropore flow increased, the necessity for using temporally discrete rainfall data became more critical. Long-term simulations indicated no significant difference between average or upper percentile (i.e., <2% difference in percent loss as a function of mass applied) atrazine, metolachlor, or isoxaflutole/metabolite loss through subsurface drainage among the three different rainfall assumptions. It was necessary (i.e., within 7% of predicted loss) to use hourly or average duration storm events as opposed to daily rainfall data for total (i.e., runoff and subsurface drainage) pesticide loss over the long term.


Subject(s)
Acetamides/analysis , Atrazine/analysis , Environment , Herbicides/analysis , Isoxazoles/analysis , Rain , Chemical Phenomena , Chemistry, Physical , Herbicides/chemistry , Indiana , Louisiana
16.
Pest Manag Sci ; 62(6): 537-50, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16625679

ABSTRACT

The Root Zone Water Quality Model (RZWQM) and Pesticide Root Zone Model (PRZM) are currently being considered by the Office of Pesticide Programs (OPP) in the United States Environmental Protection Agency (US EPA) for Tier II screening of pesticide leaching to groundwater (November 2005). The objective of the present research was to compare RZWQM and PRZM based on observed conservative tracer and pesticide pore water and soil concentrations collected in two unique groundwater leaching studies in North Carolina and Georgia. These two sites had been used previously by the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) Environmental Model Validation Task Force (EMVTF) in the validation of PRZM. As in the FIFRA EMVTF PRZM validation, 'cold' modelling using input parameters based on EPA guidelines/databases and 'site-specific' modelling using field-measured soil and hydraulic parameters were performed with a recently released version of RZWQM called RZWQM-NAWQA (National Water Quality Assessment). Model calibration was not performed for either the 'cold' or 'site-specific' modelling. The models were compared based on predicted pore water and soil concentrations of bromide and pesticides throughout the soil profile. Both models tended to predict faster movement through the soil profile than observed. Based on a quantitative normalised objective function (NOF), RZWQM-NAWQA generally outperformed or was equivalent to PRZM in simulating pore water and soil concentrations. Both models were more successful in predicting soil concentrations (i.e. NOF < 1.0 for site-specific data, which satisfies site-specific applicability) than they were at predicting pore water concentrations.


Subject(s)
Pesticide Residues/analysis , Soil Pollutants/analysis , Water Pollutants/analysis , Environment , Models, Theoretical , Pesticide Residues/standards , Reproducibility of Results , Risk Assessment , Soil Pollutants/standards , United States , Water Movements , Water Pollutants/standards
17.
Environ Sci Technol ; 39(10): 3762-9, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15952383

ABSTRACT

Present strategies for alleviating radioactive contamination from a radiological dispersal device (RDD) or dirty bomb involve either demolishing and removing radioactive surfaces or abandoning portions of the area near the release point. In both cases, it is imperative to eliminate or reduce migration of the radioisotopes until the cleanup is complete or until the radiation has decayed back to acceptable levels. This research investigated an alternative strategy of using emulsions to stabilize radioactive particulate contamination. Emergency response personnel would coat surfaces with emulsions consisting of asphalt or tall oil pitch to prevent migration of contamination. The site can then be evaluated and cleaned up as needed. In order for this approach to be effective, the treatment must eliminate migration of the radioactive agents in the terror device. Water application is an environmental condition that could promote migration into the external environment. This research investigated the potential for water, and correspondingly contaminant, migration through two emulsions consisting of Topein, a resinous byproduct during paper manufacture. Topein C is an asphaltic-based emulsion and Topein S is a tall oil pitch, nonionic emulsion. Experiments included water adsorption/ mobilization studies, filtration tests, and image analysis of photomicrographs from an environmental scanning electron microscope (ESEM) and a stereomicroscope. Both emulsions were effective at reducing water migration. Conductivity estimates were on the order of 10(-80) cm s(-1) for Topein C and 10(-7) cm s(-1) for Topein S. Water mobility depended on emulsion flocculation and coalescence time. Photomicrographs indicate that Topein S consisted of greater and more interconnected porosity. Dilute foams of isolated spherical gas cells formed when emulsions were applied to basic surfaces. Gas cells rose to the surface and ruptured, leaving void spaces that penetrated throughout the emulsion. These experiments indicate that emulsions may be a viable means for containing RDD residuals; however, improvements are needed for optimal performance.


Subject(s)
Decontamination/methods , Emulsions/chemistry , Explosions , Radioactive Fallout/prevention & control , Adsorption , Filtration , Hydrocarbons/chemistry , Microscopy, Electron, Scanning , Porosity , Radiation Protection , Radioisotopes , Resins, Plant/chemistry , Terrorism , Water/chemistry , Water Movements
18.
J Environ Qual ; 33(6): 2281-9, 2004.
Article in English | MEDLINE | ID: mdl-15537951

ABSTRACT

Macropore flow results in the rapid movement of pesticides to subsurface drains, which may be caused in part by a small portion of macropores directly connected to drains. However, current models fail to account for this direct connection. This research investigated the interrelationship between macropore flow and subsurface drainage on conservative solute and pesticide transport using the Root Zone Water Quality Model (RZWQM). Potassium bromide tracer and isoxaflutole, the active ingredient in BALANCE herbicide [(5-cyclopropyl-4-isoxazolyl) [2(methylsulfonyl)-4-(trifluoromethyl)phenyl] methanone], with average half-life of 1.7 d were applied to a 30.4-ha Indiana corn (Zea mays L.) field. Water flow and chemical concentrations emanating from the drains were measured from two samplers. Model predictions of drain flow after minimal calibration reasonably matched observations (slope = 1.03, intercept = 0.01, and R(2) = 0.75). Without direct hydraulic connection of macropores to drains, RZWQM under predicted bromide and isoxaflutole concentration during the first measured peak after application (e.g., observed isoxaflutole concentration was between 1.2 and 1.4 mug L(-1), RZWQM concentration was 0.1 mug L(-1)). This research modified RZWQM to include an express fraction relating the percentage of macropores in direct hydraulic connection to drains. The modified model captured the first measured peak in bromide and isoxaflutole concentrations using an express fraction of 2% (e.g., simulated isoxaflutole concentration increased to 1.7 mug L(-1)). The RZWQM modified to include a macropore express fraction more accurately simulates chemical movement through macropores to subsurface drains. An express fraction is required to match peak concentrations in subsurface drains shortly after chemical applications.


Subject(s)
Models, Theoretical , Pesticides/analysis , Soil Pollutants/analysis , Water Movements , Water Pollutants/analysis , Bromides/analysis , Isoxazoles/analysis , Plant Roots , Porosity , Potassium Compounds/analysis
19.
Ground Water ; 40(4): 378-84, 2002.
Article in English | MEDLINE | ID: mdl-12113356

ABSTRACT

An analytical model of stream/aquifer interaction is proposed that predicts drawdown in an aquifer with leakage from a finite-width stream induced by pumping from a well. The model is formulated based on the assumptions of stream partial penetration, a semipervious streambed, and distributed recharge across a finite-width stream. Advantages of the analytical solution include its simple structure, consisting of the Theis well function with integral modifications. The solution is derived for the semi-infinite domain between the stream and pumping well, which is of primary interest to hydrogeologists. Previous stream/aquifer analytical models are compared to the analytical solution based on dimensionless drawdown profiles. Drawdown in the aquifer near a wide stream was found to be less than that predicted by a solution that ignored stream width. Deviations between the proposed analytical solutions and previous solutions increase as stream width increases. For a hypothetical stream/aquifer system, the proposed analytical solution was equivalent to prior solutions when the ratio of the distance between the stream and aquifer to the stream width was greater than 25. This analytical solution may provide improved estimates of aquifer and streambed leakage parameters by curve fitting experimental field drawdown data.


Subject(s)
Models, Theoretical , Soil , Water Supply , Filtration , Geological Phenomena , Geology , Water Movements , Water Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...