Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(22): 14716-14725, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38774972

ABSTRACT

Ionic liquids (ILs) nanostructuring at electrified interfaces is of both fundamental and practical interest as these materials are increasingly gaining prominence in energy storage and conversion processes. However, much remains unresolved about IL potential-controlled (re)organization under highly polarized interfaces, mostly due to the difficulty of selectively probing both the distal and proximal surface layers of adsorbed ions. In this work, the structural dynamics of the innermost layer (<10 nm from the surface) were independently interrogated from that of the ionic layers in the sub-surface region (>100 nm from the surface), using an infrared (IR) spectroscopy approach. By tuning the metal fill factor of gold films deposited on conductive metal oxide-modified IR internal reflection elements, the charge-driven (re)structuring of the inner and distal layers of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate is unveiled. Within a relatively wide potential region (∼±1 V) bounding the potential of zero charges, the ionic liquid is shown to undergo a reversible (i.e., soft) reorganization whereby the innermost layer of anions (cations) is exchanged by a layer of cations (anions). Kinetically unhindered changes in the number density of constituent cations and anions largely follow electrostatic expectations in the subsurface region, whereas the innermost layer exhibits a pronounced hysteresis and very slow relaxation. Under larger negative potential bias, IL restructuring is characterized by a highly irreversible (i.e., hard) and intense interfacial densification of the BMPy+ cations, consistent with the formation of nanoscale segregated liquids. The outcomes of this work reveal a plastic IL nanostructuring under a strong electric field.

2.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38310638

ABSTRACT

To understand the speciation of solutes in aqueous solutions in high temperature radiation environments, we report the design and fabrication of a custom-built, high temperature (≤300 °C) titanium irradiation cell with in situ optical spectroscopy capabilities, as afforded by coupled fiber optic cables. The wetted surfaces of the 8-inch tall cylindrical cell with 3.5 in. diameter are entirely made of titanium, sapphire, and gold, which are chemically and radiolytically inert. The initial benchmarking results are reported, including the baseline spectrum of deionized water as a function of temperature, the stability of a spectrum over 4 h at 100 °C, and an irradiated Fricke dosimetry solution under ambient irradiator temperature conditions (27.0 ± 0.5 °C). The average gamma radiation dose rate in the cell in its current configuration is 26.1 ± 1.3 Gy min-1. This cell has application in studying several processes throughout the nuclear fuel cycle, including the reactor coolant behavior.

3.
Phys Chem Chem Phys ; 25(48): 32948-32954, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38019140

ABSTRACT

Chromium ions can make their way into the primary coolant of nuclear power reactors from the corrosion of stainless-steel reactor components, decreasing the material's corrosion resistance and resulting in increased transport of further corrosion products. Despite these potential effects, the radiation-induced redox speciation of chromium ions in aqueous solution is not well understood, especially at the elevated temperatures experienced by reactor coolants. In the present work, we report new experimental results demonstrating that in aerated aqueous solution, the radiolytic oxidation of Cr(III) to Cr(VI) occurs at pH 4, while the reduction of Cr(VI) to Cr(III) occurs at pH 2. The oxidation of Cr(III) is primarily attributed to the reaction of the hydroxyl radical (˙OH) with the Cr(OH)2+ species, while the reduction of Cr(VI) is attributed to reactions involving the hydrated electron (eaq-) and hydrogen atom (H˙). Additionally, the steady-state equilibrium yield of Cr(VI) from the gamma irradiation of pH 4 Cr(III) solutions decreased with increasing temperature (over a range of 37-195 °C). This observation indicates that the activation energy of the Cr(VI) reduction reactions is higher than that for the Cr(III) oxidation reactions, such that it becomes relatively more favorable at higher temperatures. Overall, these data are important for the development of complementary multiscale models for the prediction of metal ion speciation in high temperature radiation environments.

4.
Anal Chem ; 95(28): 10476-10480, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37395702

ABSTRACT

In situ investigations of electrocatalytic processes of increasing societal interest such as the nitrogen reduction reaction (NRR) require aggressive experimental conditions that are not readily compatible with surface sensitive techniques such as attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). A method for performing ATR-SEIRAS studies at very negative potentials where conventional IR-active films delaminate and fail is reported. The method relies on a thin film of very robust boron-doped diamond deposited on a micromachined Si wafer, which provides extended mid-IR transparency at long wavelengths. SEIRAS activity is achieved by electrodepositing gold nanoparticles onto the conductive BDD layer. The Au@BDD layers are shown to sustain prolonged periods of electrolysis at negative potentials, with no degradation of the modifying layer. The efficacy of these substrates for electrocatalysis is demonstrated by studying the reduction of N2 at -1.5 V vs Ag/AgCl in an aqueous-based electrolyte. Under these conditions, direct spectroscopic evidence of both NH3 and hydrazine formed from the nitrogen reduction reaction (NRR) is provided.

5.
J Phys Chem A ; 114(1): 117-25, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20055512

ABSTRACT

Halonitromethanes (HNMs) are byproducts formed through ozonation and chlorine/ chloramine disinfection processes in drinking waters that contain dissolved organic matter and bromide ions. These species occur at low concentration but have been determined to have high cytotoxicity and mutagenicity and therefore may represent a human health hazard. In this study, we have investigated the chemistry involved in the mineralization of HNMs to nonhazardous inorganic products through the application of advanced oxidation and reduction processes. We have combined measured absolute reaction rate constants for the reactions of chloronitromethane, bromonitromethane, and dichloronitromethane with the hydroxyl radical and the hydrated electron with a kinetic computer model in an attempt to elucidate the reaction pathways of these HNMs. The results are compared to measurements of stable products resulting from steady-state (60)Co gamma-irradiations of the same compounds. The model predicted the decomposition of the parent compounds and ingrowth of chloride and bromide ions with excellent accuracy, but the prediction of the total nitrate ion concentration was slightly in error, reflecting the complexity of nitrogen oxide species reactions in irradiated solution.


Subject(s)
Disinfectants/chemistry , Ethane/analogs & derivatives , Free Radicals/chemistry , Methane/analogs & derivatives , Nitro Compounds/chemistry , Computer Simulation , Ethane/chemistry , Kinetics , Methane/chemistry , Oxidation-Reduction
6.
Environ Sci Technol ; 41(3): 863-9, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17328195

ABSTRACT

Absolute rate constants for the free-radical-induced degradation of trichloronitromethane (TCNM, chloropicrin) were determined using electron pulse radiolysis and transient absorption spectroscopy. Rate constants for hydroxyl radical, *OH, and hydrated electron, e(aq)-, reactions were (4.97 +/- 0.28) x 10(7) M(-1) s(-1) and (2.13 +/- 0.03) x 10(10) M(-1) s(-1), respectively. It appears that the *OH adds to the nitro-group, while the e(aq)- reacts via dissociative electron attachment to give two carbon centered radicals. The mechanisms of these free radical reactions with TCNM were investigated, using 60Co gamma irradiation at various absorbed doses, measuring the disappearance of TCNM and the appearance of the product nitrate and chloride ions. The rate constants and mechanistic data were combined in a kinetic computer model that was used to describe the major free radical pathways for the destruction of TCNM in solution. These data are applicable to other advanced oxidation/reduction processes.


Subject(s)
Disinfection , Free Radicals/chemistry , Hydrocarbons, Chlorinated/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Chlorides/analysis , Chlorides/chemistry , Cobalt Radioisotopes , Dose-Response Relationship, Radiation , Gamma Rays , Ions , Kinetics , Models, Chemical , Nitrates/analysis , Nitrates/chemistry
7.
J Phys Chem A ; 111(3): 468-71, 2007 Jan 25.
Article in English | MEDLINE | ID: mdl-17228895

ABSTRACT

A pulsed, two-beam, thermal lensing experiment was performed to determine the concentration of aqueous solutes above the critical point of water. Despite a very significant mirage effect due to thermal gradients in the cell and absorption by water itself, the thermal lensing signal strength for aqueous benzoic acid in supercritical water was found to be linear with concentration in the sub-millimolar range. Although thermal lensing experiments in aqueous media are notoriously insensitive, the sharp density gradient near the critical point considerably improves the signal intensity. In this study a short-pulse pump 266 nm YAG laser and continuous low-power probe Ar ion beam were both focused into a supercritical water cell, giving a lensing signal whose strength could be maximized by changing the overlap of the two beams.

8.
J Phys Chem A ; 110(6): 2176-80, 2006 Feb 16.
Article in English | MEDLINE | ID: mdl-16466253

ABSTRACT

Halonitromethanes are disinfection-byproducts formed during ozonation and chlorine/chloramine treatment of waters that contain bromide ion and natural organic matter. In this study, the chemical kinetics of the free-radical-induced degradations of a series of halonitromethanes were determined. Absolute rate constants for hydroxyl radical, *OH, and hydrated electron, e(aq)-, reaction with both chlorinated and brominated halonitromethanes were measured using the techniques of electron pulse radiolysis and transient absorption spectroscopy. The bimolecular rate constants obtained, k (M(-1) s(-1)), for e(aq)-/*OH, respectively, were the following: chloronitromethane (3.01 +/- 0.40) x 10(10)/(1.94 +/- 0.32) x 10(8); dichloronitromethane (3.21 +/- 0.17) x 10(10)/(5.12 +/- 0.77) x 10(8); bromonitromethane (3.13 +/- 0.06) x 10(10)/(8.36 +/- 0.57) x 10(7); dibromonitromethane (3.07 +/- 0.40) x 10(10)/(4.75 +/- 0.98) x 10(8); tribromonitromethane (2.29 +/- 0.39) x 10(10)/(3.25 +/- 0.67) x 10(8); bromochloronitromethane (2.93 +/- 0.47) x 10(10)/(4.2 +/- 1.1) x 10(8); bromodichloronitromethane (2.68 +/- 0.13) x 10(10)/(1.02 +/- 0.15) x 10(8); and dibromochloronitromethane (2.95 +/- 0.43) x 10(10) / (1.80 +/- 0.31) x 10(8) at room temperature and pH approximately 7. Comparison data were also obtained for hydroxyl radical reaction with bromoform (1.50 +/- 0.05) x 10(8), bromodichloromethane (7.11 +/- 0.26) x 10(7), and chlorodibromomethane (8.31 +/- 0.25) x 10(7) M(-1) s(-1), respectively. These rate constants are compared to recently obtained data for trichloronitromethane and bromonitromethane, as well as to other established literature data for analogous compounds.


Subject(s)
Disinfectants/chemistry , Electrons , Free Radicals/chemistry , Hydrocarbons, Halogenated/chemistry , Hydroxyl Radical/chemistry , Nitrosamines/chemistry , Water/chemistry , Dimethylnitrosamine , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Pulse Radiolysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...