Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 116(15): 3824-35, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-22435875

ABSTRACT

The chemistry of (H(2)O)(n)(•-), CO(2)(•-)(H(2)O)(n), and O(2)(•-)(H(2)O)(n) with small sulfur-containing molecules was studied in the gas phase by Fourier transform ion cyclotron resonance mass spectrometry. With hydrated electrons and hydrated carbon dioxide radical anions, two reactions with relevance for biological radiation damage were observed, cleavage of the disulfide bond of CH(3)SSCH(3) and activation of the thiol group of CH(3)SH. No reactions were observed with CH(3)SCH(3). The hydrated superoxide radical anion, usually viewed as major source of oxidative stress, did not react with any of the compounds. Nanocalorimetry and quantum chemical calculations give a consistent picture of the reaction mechanism. The results indicate that the conversion of e(-) and CO(2)(•-) to O(2)(•-) deactivates highly reactive species and may actually reduce oxidative stress. For reactions of (H(2)O)(n)(•-) with CH(3)SH as well as CO(2)(•-)(H(2)O)(n) with CH(3)SSCH(3), the reaction products in the gas phase are different from those reported in the literature from pulse radiolysis studies. This observation is rationalized with the reduced cage effect in reactions of gas-phase clusters.


Subject(s)
Disulfides/chemistry , Free Radicals/chemistry , Sulfhydryl Compounds/chemistry , Gases/chemistry , Mass Spectrometry/methods , Oxidative Stress
2.
Chemistry ; 12(24): 6382-92, 2006 Aug 16.
Article in English | MEDLINE | ID: mdl-16718727

ABSTRACT

An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H(2)O)(n) and AgCl(H(2)O)(n) with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H(2)O)(n) is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ mol(-1)), are identifiable on the free energy profiles of NaCl(H(2)O)(n) for n = 10 and 14 at 300 K, with the Na(+)/Cl(-) pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ mol(-1)). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H(2)O)(n) clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure.

3.
Phys Chem Chem Phys ; 7(5): 981-5, 2005 Mar 07.
Article in English | MEDLINE | ID: mdl-19791389

ABSTRACT

Hydrated singly charged zinc cations Zn (H2O)n, n approximately 6-53, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Black-body radiation induced dissociation results exclusively in sequential loss of individual water molecules. In the reaction of Zn+ (H2O)n with gaseous HCl, Zn is oxidized and hydrogen reduced when a second HCl molecule is taken up, leading to the formation of ZnCl+ (HCl)(H2O)n-m cluster ions and evaporation of atomic hydrogen together with m H2O molecules. The results are compared with earlier studies of Mg+ (H2O)n, for which hydrogen formation is already observed without HCl in a characteristic size region. The difference between zinc and magnesium is rationalized with the help of density functional theory calculations, which indicate a distinct difference in the thermochemistry of the reactions involved. The generally accepted hydrated electron model for hydrogen formation in Mg+ (H2O)n is modified for zinc to account for the different reactivity.


Subject(s)
Hydrochloric Acid/chemistry , Hydrogen/chemistry , Water/chemistry , Zinc/chemistry , Cations/chemistry , Computer Simulation , Models, Chemical , Thermodynamics
4.
Rapid Commun Mass Spectrom ; 18(13): 1479-81, 2004.
Article in English | MEDLINE | ID: mdl-15216509

ABSTRACT

A route to efficient generation of C6H4+*, potentially the benzyne radical cation, is presented. Laser vaporization of Mg+* and supersonic expansion in helium doped with o-, m-, or p-C6H4F2 yields, among other ions, o-, m-, p-C6H4F2Mg+* complexes, but no C6H4+*. Collision-induced dissociation experiments show that the o-C6H4F2Mg+* complex can be converted into C6H4+* in a mildly energetic collision, with a center-of-mass energy around 1-2 eV. These conditions can also be reached in the ion source when argon is used as a carrier gas. In this way, mass spectra containing the desired m/z 76 peak, i.e. C6H4+*, are obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...