Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(9)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32872654

ABSTRACT

This paper discusses the surface-engineered nanomaterials (adaptive nano-structured physical vapor deposition (PVD) thin-film coatings) that can effectively perform under severely non-equilibrium tribological conditions. The typical features of these nanomaterials are: (a) Dynamically interacting elements present in sufficient amounts to account for its compositional/structural complexity; (b) an initial non-equilibrium state; (c) optimized micro-mechanical characteristics, and (d) intensive adaptation to the external stimuli. These could be considered as functionally graded nanomaterials that consist of two major layers: an underlying (2-3 microns) thin-film PVD coating, the surface on which an outer nanoscale layer of dynamically re-generating tribo-films is produced as a result of self-organization during friction. This tribo-film nanolayer (dissipative structures) was discovered to represent complex matter, which exhibits characteristic properties and functions common to naturally occurring systems. These include adaptive interaction with a severely non-equilibrium environment; formation of compounds such as sapphire, mullite, and garnet, similar to those that arise during metamorphism; ability to evolve with time; as well as complexity and multifunctional, synergistic behavior. Due to several nanoscale effects, this nanolayer is capable of protecting the surface with unprecedented efficiency, enabling extensive control over the performance of the entire surface-engineered system. These surface-engineered nanomaterials can achieve a range (speed and level) of adaptability to the changing environment that is not found in naturally occurring materials. Therefore, these materials could be classified as metamaterials. The second major characteristic of these materials is the structure and properties of the coating layer, which mostly functions as a catalytic medium for tribo-film generation and replenishment. A functioning example of this type of material is represented by an adaptive hard thin-film TiAlCrSiYN/TiAlCrN nano-multilayer PVD coating, which can efficiently work in an extreme environment, typical for the dry machining of hard-to-cut materials.

2.
Sci Rep ; 7(1): 17078, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29213082

ABSTRACT

Plasmon resonance heterogeneities were identified and studied along Ag and TiAlN layers within a multilayer stack in nanolaminate TiAlN/Ag coatings. For this purpose, a high-resolution plasmon microscopy was used. The plasmons intensity, energy, and depth of interface plasmon-polariton penetration were studied by scanning reflected electron energy loss spectroscopy. The heat conductivity of such metal-insulator-metal (MIM) nanolaminate coatings was measured by laser reflectometry. Dependencies of thermal conductivity coefficient of coatings, MIM interfaces, and resistivity of Ag layers as a function of the Ag-TiAlN bilayer thickness were calculated on the basis of experimental data. The contribution of plasmon resonance confinement to the abnormal lower thermal conductivity in the MIM metamaterial with Ag layer thickness below 25 nm is discussed. In particular, the results highlight the relevant role of different heat transfer mechanisms between MI and IM interfaces: asymmetry of plasmon-polariton interactions on upper and lower boundaries of Ag layer and asymmetry of LA and TA phonons propagation through interfaces.

3.
Sci Rep ; 5: 8780, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25740153

ABSTRACT

Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...