Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Periodontol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830780

ABSTRACT

BACKGROUND: Prolonged inflammation and oxidative stress can impede healing. To enhance healing efficiency, many solutions have been employed. This is an in vivo study comparing chlorhexidine (CHX) to a commercial antioxidant gel (AO). METHODS: Envelope flaps were created in the lower incisor gingival region of 60 Sprague-Dawley rats, and acellular dermal matrix (ADM) was inserted. Animals were randomly assigned to postsurgical treatment application of AO gel or 0.12% CHX twice daily. A control group received no postsurgical treatment. Data collected (before surgery, 24 h, and 72 h) included surgical images, tissue samples, and weights. Blinded scorers assessed images using a wound healing scale. Real-time polymerase chain reaction (RT-PCR) was used for gene expression of tumor necrosis factor-alpha (TNFα), interleukin-1 (IL-1), myeloperoxidase (MPO), and superoxide dismutase (SOD). RESULTS: The AO group scored higher than the CHX and control groups in clinical evaluation (p < 0.05). At 24 h, TNFα expression was upregulated in the AO group compared to CHX (p = 0.027) and controls (p = 0.018). The AO group had significantly higher expression of antioxidant enzyme (SOD) at 24 h compared to CHX (p = 0.021). All animals lost weight in the first 24 h. Animals treated with AO or CHX regained more weight at 72 h than control animals (p = 0.034 and 0.003, respectively). CONCLUSION: Animals treated with AO healed faster. AO led to earlier upregulation of TNFα and antioxidant enzyme SOD. We hypothesized that AO promoted an earlier inflammatory process while counteracting oxidative stress by increasing antioxidant responses via SOD.

2.
Semin Cell Dev Biol ; 124: 85-98, 2022 04.
Article in English | MEDLINE | ID: mdl-34120836

ABSTRACT

Periodontal disease is an inflammatory reaction of the periodontal tissues to oral pathogens. In the present review we discuss the intricate effects of a regulatory network of gene expression modulators, microRNAs (miRNAs), as they affect periodontal morphology, function and gene expression during periodontal disease. These miRNAs are small RNAs involved in RNA silencing and post-transcriptional regulation and affect all stages of periodontal disease, from the earliest signs of gingivitis to the regulation of periodontal homeostasis and immunity and to the involvement in periodontal tissue destruction. MiRNAs coordinate periodontal disease progression not only directly but also through long non-coding RNAs (lncRNAs), which have been demonstrated to act as endogenous sponges or decoys that regulate the expression and function of miRNAs, and which in turn suppress the targeting of mRNAs involved in the inflammatory response, cell proliferation, migration and differentiation. While the integrity of miRNA function is essential for periodontal health and immunity, miRNA sequence variations (genetic polymorphisms) contribute toward an enhanced risk for periodontal disease progression and severity. Several polymorphisms in miRNA genes have been linked to an increased risk of periodontitis, and among those, miR-146a, miR-196, and miR-499 polymorphisms have been identified as risk factors for periodontal disease. The role of miRNAs in periodontal disease progression is not limited to the host tissues but also extends to the viruses that reside in periodontal lesions, such as herpesviruses (human herpesvirus, HHV). In advanced periodontal lesions, HHV infections result in the release of cytokines from periodontal tissues and impair antibacterial immune mechanisms that promote bacterial overgrowth. In turn, controlling the exacerbation of periodontal disease by minimizing the effect of periodontal HHV in periodontal lesions may provide novel avenues for therapeutic intervention. In summary, this review highlights multiple levels of miRNA-mediated control of periodontal disease progression, (i) through their role in periodontal inflammation and the dysregulation of homeostasis, (ii) as a regulatory target of lncRNAs, (iii) by contributing toward periodontal disease susceptibility through miRNA polymorphism, and (iv) as periodontal microflora modulators via viral miRNAs.


Subject(s)
MicroRNAs , Periodontal Diseases , RNA, Long Noncoding , Disease Progression , Humans , Inflammation/genetics , MicroRNAs/metabolism , Periodontal Diseases/genetics
3.
Stem Cells Dev ; 28(15): 1015-1025, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31218921

ABSTRACT

Inflammatory conditions affect periodontal ligament (PDL) homeostasis and diminish its regenerative capacity. The complexity of biological activities during an inflammatory response depends on genetic and epigenetic mechanisms. To characterize the epigenetic changes in response to periodontal pathogens we have focused on histone lysine methylation as a relatively stable chromatin modification involved in the epigenetic activation and repression of transcription and a prime candidate mechanism responsible for the exacerbated and prolonged response of periodontal cells and tissues to dental plaque biofilm. To determine the effect of inflammatory conditions on histone methylation profiles, related gene expression and cellular functions of human periodontal ligament (hPDL) progenitor cells, a hPDL cell culture system was subjected to bacterial cell wall toxin exposure [lipopolysaccharide (LPS)]. Chromatin immunoprecipitation-on-chip analysis revealed that healthy PDL cells featured high enrichment levels for the active H3K4me3 mark at COL1A1, COL3, and RUNX2 gene promoters, whereas there were high occupancy levels for the repressive H3K27me3 marks at DEFA4, CCL5, and IL-1ß gene promoters. In response to LPS, H3K27me3 enrichment increased on extracellular matrix and osteogenesis lineage gene promoters, whereas H3K4me3 enrichment increased on the promoters of inflammatory response genes, suggestive of an involvement of epigenetic mechanisms in periodontal lineage differentiation and in the coordination of the periodontal inflammatory response. On a gene expression level, LPS treatment downregulated COL1A1, COL3A1, and RUNX2 expression and upregulated CCL5, DEFA4, and IL-1ß gene expression. LPS also greatly affected PDL progenitor function, including a reduction in proliferation and differentiation potential and an increase in cell migration capacity. Confirming the role of epigenetic mechanisms in periodontal inflammatory conditions, our studies highlight the significant role of histone methylation mechanisms and modification enzymes in the inflammatory response to LPS bacterial cell wall toxins and periodontal stem cell function.


Subject(s)
Histone Methyltransferases/metabolism , Histones/metabolism , Periodontal Ligament/metabolism , Periodontitis/metabolism , Stem Cells/metabolism , Cell Differentiation/genetics , Cells, Cultured , DNA Methylation/physiology , Epigenesis, Genetic/physiology , Gene Expression Regulation , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides , Osteogenesis/genetics , Periodontal Ligament/cytology , Periodontal Ligament/pathology , Periodontitis/genetics , Periodontitis/pathology , Protein Processing, Post-Translational/physiology , Stem Cells/immunology , Stem Cells/pathology
4.
Stem Cells Dev ; 28(15): 1004-1014, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31215318

ABSTRACT

The function of mammalian periodontal tissues depends on the presence of a nonmineralized periodontal ligament (PDL) juxtaposed in between mineralized tooth anchorage tissues alveolar bone (AB) and root cementum. In the present study we have hypothesized that the Wnt antagonist secreted frizzled related protein 1 (SFRP1) is an essential regulator of periodontal tissue mineral homeostasis. Our immunoreactions and western blot data demonstrated that SFRP1 was substantially expressed higher in PDL fibroblasts than in surrounding AB progenitors and cementoblasts. SFRP1 was also detected at higher levels in PDL fibroblasts than in dental follicle (DF) cells, but the difference was less pronounced. Preferential H3K4me3 active histone mark enrichment on the SFRP1 promoter and a lack of H3K27me3 repression were most dramatic in PDL progenitors, to a lesser degree in DF cells, and not detected in AB progenitors and cementoblasts. Selective inhibition of SFRP1 using a small molecule inhibitor WAY-316606 demonstrated that SFRP1 block increased PDL cell mineralization and mineralization gene expression such as ß-catenin, alkaline phosphatase, osteocalcin, collagen I, and RUNX2. The effect of SFRP1 inhibition on PDL cell mineral homeostasis was confirmed by RNA silencing. These studies also demonstrated that SFRP1 knockdown promotes PDL differentiation through histone H3K4me3-mediated activation of RUNX2 and SP7. Finally, when SFRP1 inhibition and silencing studies were performed using AB progenitors instead of PDL progenitors, there was little effect on mineralized state control and gene expression, with the exception of osteocalcin, which was dramatically upregulated upon SFRP1 silencing. Together, the results of our study document the highly specific role of the Wnt inhibitor SFRP1 in maintaining the nonmineralized state of PDL progenitors.


Subject(s)
Calcification, Physiologic/genetics , Intercellular Signaling Peptides and Proteins/physiology , Membrane Proteins/physiology , Minerals/metabolism , Periodontium/metabolism , Adolescent , Animals , Cells, Cultured , Child , Dental Sac/cytology , Dental Sac/metabolism , Homeostasis/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Periodontal Ligament/cytology , Rats , Rats, Sprague-Dawley , Stem Cells/cytology , Stem Cells/physiology , Wnt Proteins/antagonists & inhibitors
5.
Int J Oral Sci ; 10(3): 24, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30078842

ABSTRACT

MicroRNAs (miRNAs) are critical regulators of the host immune and inflammatory response against bacterial pathogens. In the present review, we discuss target genes, target gene functions, the potential regulatory role of miRNAs in periodontal tissues, and the potential role of miRNAs as biomarkers and therapeutics. In periodontal disease, miRNAs exert control over all aspects of innate and adaptive immunity, including the functions of neutrophils, macrophages, dendritic cells and T and B cells. Previous human studies have highlighted some key miRNAs that are dysregulated in periodontitis patients. In the present study, we mapped the major miRNAs that were altered in our reproducible periodontitis mouse model relative to control animals. The miRNAs that were upregulated as a result of periodontal disease in both human and mouse studies included miR-15a, miR-29b, miR-125a, miR-146a, miR-148/148a and miR-223, whereas miR-92 was downregulated. The association of individual miRNAs with unique aspects of periodontal disease and their stability in gingival crevicular fluid underscores their potential as markers for periodontal disease progression or healthy restitution. Moreover, miRNA therapeutics hold great promise for the future of periodontal therapy because of their ability to modulate the immune response to infection when applied in conjunction with synthetic antagomirs and/or relatively straightforward delivery strategies.


Subject(s)
MicroRNAs/genetics , MicroRNAs/immunology , Periodontal Diseases/genetics , Periodontal Diseases/immunology , Adaptive Immunity , Animals , Biomarkers , Disease Progression , Humans , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL
...