Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895305

ABSTRACT

Background: Treatment strategies for Crohn's disease (CD) suppress diverse inflammatory pathways but many patients remain refractory to treatment. Autologous hematopoietic stem cell transplantation (SCT) has emerged as a therapy for medically refractory CD. SCT was developed to rescue cancer patients from myelosuppressive chemotherapy but its use for CD and other immune diseases necessitates reimagining SCT as a cellular therapy that restores appropriately responsive immune cell populations from hematopoietic progenitors in the stem cell autograft (i.e. immune "reset"). Here we present a paradigm to understand SCT as a cellular therapy for immune diseases and reveal how SCT re-establishes cellular immunity utilizing high-dimensional cellular phenotyping and functional studies of the stem cell grafts. Methods: Immunophenotyping using CyTOF, single cell RNA sequencing (scRNA-seq) and T cell receptor (TCR) sequencing was performed on peripheral blood and intestinal tissue samples from refractory CD patients who underwent SCT. The stem cell graft from these patients was analyzed using flow cytometry and functionally interrogated using a murine model for engraftment. Results: Our study revealed a remodeling of intestinal macrophages capable of supporting mucosal healing that was independently validated using multimodal studies of immune reconstitution events including CyTOF and scRNA-seq. Functional interrogation of hematopoietic stem cells (HSCs) using a xenograft model demonstrated that HSCs shape the timing of immune reconstitution, the selected reconstitution of specific cell lineages and potentially the clinical efficacy of SCT. Conclusions: These studies indicate that SCT serves as a myeloid-directed cellular therapy re-establishing homeostatic intestinal macrophages that support intestinal healing and suggest refractory CD evolves from impairment of restorative functions in myeloid cells. Furthermore, we report heterogeneity among HSCs from CD patients which may drive SCT outcomes and suggests an unrecognized impact of CD pathophysiology on HSC in the marrow niche.

2.
Diabetes ; 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34957485

ABSTRACT

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2KO/KI, Sco2KI/KI), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2KO/KI and Sco2KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2KO/KI;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

3.
Diabetes ; 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34702781

ABSTRACT

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2 KO/KI , Sco2 KI/KI ), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2 KO/KI and Sco2 KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2 KO/KI ;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

SELECTION OF CITATIONS
SEARCH DETAIL
...