Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(11): 6253-6268, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38613392

ABSTRACT

MicroRNAs (miRNAs) are essential regulators of several biological processes. They are loaded onto Argonaute (AGO) proteins to achieve their repressive function, forming the microRNA-Induced Silencing Complex known as miRISC. While several AGO proteins are expressed in plants and animals, it is still unclear why specific AGOs are strictly binding miRNAs. Here, we identified the co-chaperone DNJ-12 as a new interactor of ALG-1, one of the two major miRNA-specific AGOs in Caenorhabditis elegans. DNJ-12 does not interact with ALG-2, the other major miRNA-specific AGO, and PRG-1 and RDE-1, two AGOs involved in other small RNA pathways, making it a specific actor in ALG-1-dependent miRNA-mediated gene silencing. The loss of DNJ-12 causes developmental defects associated with defective miRNA function. Using the Auxin Inducible Degron system, a powerful tool to acutely degrade proteins in specific tissues, we show that DNJ-12 depletion hampers ALG-1 interaction with HSP70, a chaperone required for miRISC loading in vitro. Moreover, DNJ-12 depletion leads to the decrease of several miRNAs and prevents their loading onto ALG-1. This study uncovers the importance of a co-chaperone for the miRNA function in vivo and provides insights to explain how different small RNAs associate with specific AGO in animals.


Subject(s)
Argonaute Proteins , Caenorhabditis elegans Proteins , Caenorhabditis elegans , HSP40 Heat-Shock Proteins , MicroRNAs , Molecular Chaperones , Animals , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Protein Binding , RNA-Binding Proteins , HSP40 Heat-Shock Proteins/metabolism
2.
Wiley Interdiscip Rev RNA ; 13(4): e1701, 2022 07.
Article in English | MEDLINE | ID: mdl-34725940

ABSTRACT

Among the different types of small RNAs, microRNAs (miRNAs) are key players in controlling gene expression at the mRNA level. To be active, they must associate with an Argonaute protein to form the miRNA induced silencing complex (miRISC) and binds to specific mRNA through complementarity sequences. The miRISC binding to an mRNA can lead to multiple outcomes, the most frequent being inhibition of the translation and/or deadenylation followed by decapping and mRNA decay. In the last years, several studies described different mechanisms modulating miRISC functions in animals. For instance, the regulation of the Argonaute protein through post-translational modifications can change the miRISC gene regulatory activity as well as modulate its binding to proteins, mRNA targets and miRISC stability. Furthermore, the presence of RNA binding proteins and multiple miRISCs at the targeted mRNA 3' untranslated region (3'UTR) can also affect its function through cooperation or competition mechanisms, underlying the importance of the 3'UTR environment in miRNA-mediated repression. Another way to regulate the miRISC function is by modulation of its interactors, forming different types of miRNA silencing complexes that affect gene regulation differently. It is also reported that the subcellular localization of several components of the miRNA pathway can modulate miRISC function, suggesting an important role for vesicular trafficking in the regulation of this essential silencing complex. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.


Subject(s)
MicroRNAs , Riboswitch , 3' Untranslated Regions , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism
3.
Dev Cell ; 47(2): 239-247.e4, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30245155

ABSTRACT

Animal germ cells possess a specific post-transcriptional regulatory context allowing the storage of maternal transcripts in the oocyte until their translation at a specific point in early development. As key regulators of gene expression, miRNAs repress translation mainly through mRNA destabilization. Thus, germline miRNAs likely use distinct ways to regulate their targets. Here, we use C. elegans to compare miRNA function within germline and somatic tissues. We show that the same miRNA displays tissue-specific gene regulatory mechanisms. While translational repression occurs in both tissues, targeted mRNAs are instead stabilized in the germline. Comparative analyses of miRNA silencing complexes (miRISC) demonstrate that their composition differs from germline to soma. We show that germline miRNA targets preferentially localize to perinuclear regions adjacent to P granules, and their repression is dependent on the core P granule component GLH-1. Together, our findings reveal the existence of different miRISC in animals that affect targeted mRNAs distinctively.


Subject(s)
Gene Expression Regulation/genetics , Gene Silencing/physiology , MicroRNAs/metabolism , Animals , Argonaute Proteins/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Germ Cells/metabolism , MicroRNAs/genetics , Oocytes/metabolism , RNA Interference , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...