Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(10): 12509-12520, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38415586

ABSTRACT

We report the use of Zr-based metal-organic frameworks (MOFs) MOF-545 and MOF-545(Cu) as supports to prepare catalysts with uniformly and highly dispersed Ni nanoparticles (NPs) for CO2 hydrogenation into CH4. In the first step, we studied the MOF support under catalytic conditions using operando diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, ex situ characterizations (PXRD, XPS, TEM, and EDX-element mapping), and DFT calculations. We showed that the high-temperature conditions undoubtedly confer a potential for catalytic functionality to the solids toward CH4 production, while no role of the Cu could be evidenced. The MOF was shown to be transformed into a catalytically active material, amorphized but still structured with dehydroxylated Zr-oxoclusters, in line with DFT calculations. In the second step, Ni@MOF-545 catalysts were prepared using either impregnation (IM) or double solvent (DS) methods, followed by a dry reduction (R) route under H2 to immobilize Ni NPs. The highest catalytic activity was obtained with the Ni@MOF-545 DS R catalyst (595 mmolCH4 gNi-1 h-1) with 100% CH4 selectivity and 60% CO2 conversion after ∼3 h. The higher catalytic activity of Ni@MOF-545 DS R is a result of much smaller (∼5 nm) and better dispersed Ni NPs than in the IM sample (20-40 nm), the latter exhibiting sintering. The advantages of the encapsulation of Ni NPs by the DS method and of the use of a MOF-545-based support are discussed, highlighting the interest of designing yet-unexplored Zr-based MOFs loaded with Ni NPs for CO2 hydrogenation.

2.
ACS Appl Mater Interfaces ; 16(2): 2086-2100, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38166380

ABSTRACT

To make a drug work better, the active substance can be incorporated into a vehicle for optimal protection and control of the drug delivery time and space. For making the drug carrier, the porous metal-organic framework (MOF) can offer high drug-loading capacity and various designs for effective drug delivery performance, biocompatibility, and biodegradability. Nevertheless, its degradation process is complex and not easily predictable, and the toxicity concern related to the MOF degradation products remains a challenge for their clinical translation. Here, we describe an in-depth molecular and nanoscale degradation mechanism of aluminum- and iron-based nanoMIL-100 materials exposed to phosphate-buffered saline. Using a combination of analytical tools, including X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and electron microscopy, we demonstrate qualitatively and quantitatively the formation of a new coordination bond between metal(III) and phosphate, trimesate release, and correlation between these two processes. Moreover, the extent of material erosion, i.e., bulk or surface erosion, was examined from the transformation of nanoparticles' surface, morphology, and interaction with water. Similar analyses show the impact of drug loading and surface coating on nanoMIL-100 degradation and drug release as a function of the metal-ligand binding strength. Our results indicate how the chemistry of nanoMIL-100(Al) and nanoMIL-100(Fe) drug carriers affects their degradation behaviors in a simulated physiological medium. This difference in behavior between the two nanoMIL-100s enables us to better correlate the nanoscale and atomic-scale mechanisms of the observed phenomena, thus validating the presented multiscale approach.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Drug Delivery Systems , Drug Carriers/chemistry , Iron/chemistry , Phosphates , Drug Liberation
3.
Small Methods ; 7(11): e2300458, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37712197

ABSTRACT

Metal halide perovskites (MHPs) are semiconductors with promising application in optoelectronic devices, particularly, in solar cell technologies. The chemical and electronic properties of MHPs at the surface and interfaces with adjacent layers dictate charge transfer within stacked devices and ultimately the efficiency of the latter. X-ray photoelectron spectroscopy is a powerful tool to characterize these material properties. However, the X-ray radiation itself can potentially affect the MHP and therefore jeopardize the reliability of the obtained information. In this work, the effect of X-ray irradiation is assessed on Cs0.05 MA0.15 FA0.8 Pb(I0.85 Br0.15 )3  (MA for CH3 NH3 , and FA for CH2 (NH2 )2 ) MHP thin-film samples in a half-cell device. There is a comparison of measurements acquired with synchrotron radiation and a conventional laboratory source for different times. Changes in composition and core levels binding energies are observed in both cases, indicating a modification of the chemical and electronic properties. The results suggest that changes observed over minutes with highly brilliant synchrotron radiation are likely occurring over hours when working with a lab-based source providing a lower photon flux. The possible degradation pathways are discussed, supported by steady-state photoluminescence analysis. The work stresses the importance of beam effect assessment at the beginning of XPS experiments of MHP samples.

4.
Nanoscale ; 14(6): 2167-2176, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35080556

ABSTRACT

Graphene grown via chemical vapour deposition (CVD) on copper foil has emerged as a high-quality, scalable material, that can be easily integrated on technologically relevant platforms to develop promising applications in the fields of optoelectronics and photonics. Most of these applications require low-contaminated high-mobility graphene (i.e., approaching 10 000 cm2 V-1 s-1 at room temperature) to reduce device losses and implement compact device design. To date, these mobility values are only obtained when suspending or encapsulating graphene. Here, we demonstrate a rapid, facile, and scalable cleaning process, that yields high-mobility graphene directly on the most common technologically relevant substrate: silicon dioxide on silicon (SiO2/Si). Atomic force microscopy (AFM) and spatially-resolved X-ray photoelectron spectroscopy (XPS) demonstrate that this approach is instrumental to rapidly eliminate most of the polymeric residues which remain on graphene after transfer and fabrication and that have adverse effects on its electrical properties. Raman measurements show a significant reduction of graphene doping and strain. Transport measurements of 50 Hall bars (HBs) yield hole mobility µh up to ∼9000 cm2 V-1 s-1 and electron mobility µe up to ∼8000 cm2 V-1 s-1, with average values µh ∼ 7500 cm2 V-1 s-1 and µe ∼ 6300 cm2 V-1 s-1. The carrier mobility of ultraclean graphene reaches values nearly double than those measured in graphene processed with acetone cleaning, which is the method widely adopted in the field. Notably, these mobility values are obtained over large-scale and without encapsulation, thus paving the way to the adoption of graphene in optoelectronics and photonics.

5.
Environ Sci Pollut Res Int ; 29(1): 1239-1245, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34350575

ABSTRACT

We studied the electrochemical reduction based on gold electrode of a diazonium salt prepared from ethylenediamine. This is the first time where the covalent functionalization on the gold electrode of an alkyldiazonium salt, 2-aminoethane-1-diazonium chloride, is demonstrated. This step requires the preparation beforehand by diazotization of one amine group from ethylenediamine. The resulting electrodeposited ethylamine film was confirmed by spectroscopic characterizations from gold surface modification monitored by electrochemical quartz crystal microbalance (EQCM) coupled to cyclic voltammetry (CV). The development of chemosensors based on such a covalent functionalization of a metal can reduce the chemical threats to human health along with drastically removing contaminants according to the green chemistry principles.


Subject(s)
Electrochemical Techniques , Gold , Diamines , Electrodes , Hazardous Substances , Humans
6.
Angew Chem Int Ed Engl ; 59(26): 10353-10358, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32187798

ABSTRACT

An innovative strategy is proposed to synthesize single-crystal nanowires (NWs) of the Al3+ dicarboxylate MIL-69(Al) MOF by using graphene oxide nanoscrolls as structure-directing agents. MIL-69(Al) NWs with an average diameter of 70±20 nm and lengths up to 2 µm were found to preferentially grow along the [001] crystallographic direction. Advanced characterization methods (electron diffraction, TEM, STEM-HAADF, SEM, XPS) and molecular modeling revealed the mechanism of formation of MIL-69(Al) NWs involving size-confinement and templating effects. The formation of MIL-69(Al) seeds and the self-scroll of GO sheets followed by the anisotropic growth of MIL-69(Al) crystals are mediated by specific GO sheets/MOF interactions. This study delivers an unprecedented approach to control the design of 1D MOF nanostructures and superstructures.

7.
ACS Appl Mater Interfaces ; 12(7): 8466-8474, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31971768

ABSTRACT

The integration of functional thin film materials with adaptable properties is essential for the development of new paradigms in information technology. Among them, complex oxides with perovskite structures have huge potential based on the particularly vast diversity of physical properties. Here, we demonstrate the possibility of transferring perovskite oxide materials like SrTiO3 onto a silicon substrate using an environmentally friendly process at the nanoscale by means of a water-soluble perovskite sacrificial layer, SrVO3. Based on in situ monitoring atomic force microscopy and photoemission studies, we reveal that the dissolution is initiated from a strontium-rich phase at the extreme surface of SrVO3. The nanothick SrTiO3-transferred layer onto silicon presents appropriate morphology and monocrystalline quality, providing a proof of concept for the integration and development of all-perovskite-oxide electronics or "oxitronics" onto any Si-based substrate.

8.
Nanoscale ; 9(2): 538-546, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27762415

ABSTRACT

The lack of scalable-methods for the growth of 2D MoS2 crystals, an identified emerging material with applications ranging from electronics to energy storage, is a current bottleneck against its large-scale deployment. We report here a two-step ALD route with new organometallic precursors, Mo(NMe2)4 and 1,2-ethanedithiol (HS(CH2)2SH) which consists in the layer-by-layer deposition of an amorphous surface Mo(iv) thiolate at 50 °C, followed by a subsequent annealing at higher temperature leading to ultra-thin MoS2 nanocrystals (∼20 nm-large) in the 1-2 monolayer range. In contrast to the usual high-temperature growth of 2D dichalcogenides, where nucleation is the key parameter to control both thickness and uniformity, our novel two-step ALD approach enables chemical control over these two parameters, the growth of 2D MoS2 crystals upon annealing being ensured by spatial confinement and facilitated by the formation of a buffer oxysulfide interlayer.

9.
Nanotechnology ; 25(14): 145606, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24633321

ABSTRACT

In this paper, we report on a continuous-flow microreactor process to prepare ZnO quantum dots (QDs) with widely tunable particle size and photoluminescence emission wavelengths. X-ray diffraction, electron diffraction, UV-vis, photoluminescence and transmission electron microscopy measurements were used to characterize the synthesized ZnO QDs. By varying operating conditions (temperature, flow rate) or the capping ligand, ZnO QDs with diameters ranging from 3.6 to 5.2 nm and fluorescence maxima from 500 to 560 nm were prepared. Results obtained show that low reaction temperatures (20 or 35 °C), high flow rates and the use of propionic acid as a stabilizing agent are favorable for the production of ZnO QDs with high photoluminescence quantum yields (up to 30%).

SELECTION OF CITATIONS
SEARCH DETAIL
...