Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Toxicol ; 96: 95-101, 2020 09.
Article in English | MEDLINE | ID: mdl-32505695

ABSTRACT

Doxorubicin (DOX) is one of the most commonly used drugs for the treatment of childhood cancers, including leukemia and lymphomas. Despite the high survival rate, female leukemia survivors are at higher risk of ovarian failure and infertility later in life. Treatment with chemotherapeutic drugs like DOX is associated with damage in ovarian follicles, but the affectation grade of granulosa cells remains unclear. To assess and avoid the possible side-effects of DOX, early biomarkers of ovarian injury and chemotherapy-induced ovarian toxicity should be identified. MicroRNAs (miRNAs) have emerged in recent years as a promising new class of biomarkers for drug-induced tissue toxicity. In this study, the effects of DOX on cell viability, steroidogenesis, and miRNA expression were studied in primary granulosa cells (GCs) and in two cellular models (COV434 and KGN cells). We report that compared to other chemotherapeutic drugs, DOX treatment is more detrimental to granulosa cells as observed by decrease of cell viability. Treatment with DOX changes the expression of the aromatase gene (CYP19A1) and the secretion of 17ß-estradiol (E2) in a cell-specific manner. miR-132-3p is dose-dependently increased by DOX in all cellular models. In absence of DOX, miR-132-3p overexpression in COV434 cells has no effect on E2 secretion or CYP19A1 expression. Altogether, these findings contribute to understanding the hormonal disbalance caused by DOX in human ovarian cells and suggest miR-132 as a putative sensor to predict DOX-induced ovarian toxicity.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Doxorubicin/toxicity , Granulosa Cells/drug effects , Aromatase/genetics , Biomarkers , Cell Survival/drug effects , Cells, Cultured , Estradiol/metabolism , Female , Granulosa Cells/metabolism , Humans , MicroRNAs
2.
Geburtshilfe Frauenheilkd ; 79(6): 618-625, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31217630

ABSTRACT

Breast cancer is one of the most common malignancies which appear during pregnancy. Since women are increasingly not giving birth until they are at a more advanced age, it can be assumed that the incidence of pregnancy-related breast cancers will continue to increase in the future. Because of pregnancy-induced changes and conservative diagnosis, these carcinomas are frequently not detected until they are at an advanced stage and thus generally require systemic adjuvant therapy. The available data on optimal chemotherapeutic management are limited. Particularly for the use of the target agent trastuzumab which could crucially contribute to improving the prognosis in the therapy of HER2-overexpressing breast cancer in non-pregnant women, there is a lack of definitive information regarding the profile of action and safety in pregnancy as well as with regard to any long-term effects on the child. Thirty-eight pregnancies on trastuzumab for the treatment of breast cancer were able to be analysed in the literature currently available. Information can be gained from this and conclusions can be drawn which can individualise and decisively improve therapeutic options in the future for the pregnant breast cancer patient.

3.
J Reprod Immunol ; 108: 65-71, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25817465

ABSTRACT

The placenta is one of the organs with the highest evolutionary diversity among animal species. In consequence, an animal model that reflects human placentation exactly does not exist. However, the mouse is the most frequently used animal model for placenta and pregnancy research. It possesses a hemochorial placenta, which is similar, but also different from the human placenta. The question whether the similarities are sufficient for the achievement of useful results with regard to human pregnancy was debated recently at the 11th Congress of the European Society for Reproductive Immunology (Budapest, Hungary). Here, we discuss the molecular features of the human placenta that are restricted to primates or even to humans. Many of the primate-specific genetic novelties, e.g., the large microRNA cluster on chromosome 19, have been detected during the last 10-15 years and could not be referred to in earlier discussions. Now, in the light of recent findings and a better understanding of interspecies differences, we conclude that the mouse model is often overvalued. Owing to the increasing number of known human-specific factors in human placentation we consider that many aspects of human placentation can only be understood on the basis of experiments on human cells and tissues in combination with data collections from human subject studies.


Subject(s)
Chorionic Gonadotropin/metabolism , Models, Animal , Placenta/physiology , Animals , Female , Humans , Mice , Pregnancy , Primates , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...