Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 134: 206-219, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34454187

ABSTRACT

Chemical recycling could facilitate the transition from a linear to a circular carbon economy, where carbon-containing waste is channeled back into the production cycle as a chemical feedstock instead of being incinerated or landfilled. However, the predominant focus on technological aspects of chemical recycling for plastic waste narrows evaluations of its potential in contributing to such a transition. Moreover, it leads to significant controversy about its role in the waste hierarchy as a possible competitor to mechanical recycling. To address these gaps in the literature, this study assesses ecological and economic impacts associated with chemical recycling of residual municipal solid waste in Germany. Combining approaches of life cycle assessment and techno-economic analysis, chemical recycling and conventional incineration-based treatment pathways are comparatively evaluated in terms of global warming potential and economic performance (i.e. fixed capital investment, net present value, dynamic payback period, and levelized cost of carbon abatement). Results indicate that compared to incineration-based conventional pathways, chemical recycling can contribute to reducing greenhouse gas emissions in low-emission energy systems. However, the economic performance of chemical recycling is highly dependent on its scale of operation. Additionally, a price premium for recycling products as well as economic instruments for penalizing CO2 emissions are identified to play important roles in the economic performance of chemical recycling.


Subject(s)
Refuse Disposal , Waste Management , Global Warming , Incineration , Recycling , Solid Waste/analysis
2.
Adv Biochem Eng Biotechnol ; 173: 143-203, 2020.
Article in English | MEDLINE | ID: mdl-32227251

ABSTRACT

The development and implementation of industrial biotechnology (IB) is associated with high expectations for reductions of environmental impacts and risks, particularly in terms of climate change and fossil resource depletion, positive socioeconomic effects, hopes for new competitive products and processes, and development in rural areas. However, not all products and processes are really advantageous with regard to sustainability criteria, and not all are economically successful and accepted by stakeholders. Sustainability and life cycle assessment can play an important role to assess IB products and processes, often accompanying development processes from the early stages onwards. Such assessments can identify key factors regarding sustainability criteria, enable a determination of both product and process performance, or aid in prospectively estimating such performance and its consequences. Thus, development processes, investment decisions, policymaking, and the communication with stakeholders can be supported. This contribution reviews the field of sustainability and life cycle assessment in IB. We explore relevant literature from a methodical and application perspective and categorise suitable methodologies, methods, and tools. We characterise IB from an assessment perspective and indicate challenges, discuss approaches to address these, and identify possible fields of future research. Thus, students, researchers, and practitioners in the field of IB will obtain an up-to-date overview, references to relevant fields of literature, and guidance for own studies in this important and fast-emerging topic.


Subject(s)
Biotechnology , Environment , Industry , Forecasting , Green Chemistry Technology , Humans
3.
Article in English | MEDLINE | ID: mdl-32232765

ABSTRACT

Industrial biotechnology (IB) uses biological and biochemical processes in industrial production and is often regarded as an emerging key technology revolutionizing the production of many products while protecting resources and the environment and fostering economic development. This contribution describes the background and sketches the content of the volume 'Sustainability and Life Cycle Assessment of Industrial Biotechnology' in the Springer series 'Advances in Biochemical Engineering/Biotechnology'. The field of IB is introduced from different perspectives (milestones in IB history, economics of biotechnology industry, environmental and social as well as ethical issues and impacts, green chemistry) and in several applications fields (production of chemicals, geobiotechnology in mining).


Subject(s)
Biotechnology , Industry , Sustainable Development
SELECTION OF CITATIONS
SEARCH DETAIL
...