Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 174(1-2): 50-8, 2000.
Article in English | MEDLINE | ID: mdl-10985742

ABSTRACT

The phylogenetic affiliation of epibionts occurring in three morphologically distinct types of green-colored phototrophic consortia was investigated. Intact consortia of the types "Chlorochromatium aggregatum", "C. glebulum", and a third previously undescribed type, tentatively named "C. magnum" were mechanically separated from accompanying bacteria by either micromanipulation or by chemotactic accumulation in sulfide-containing capillaries. A 540-base-pair-long fragment of the 16S rRNA gene of the epibionts was amplified employing PCR primers specific for green sulfur bacteria. DNA fragments were separated by denaturing gradient gel electrophoresis and subsequently sequenced. The results of this phylogenetic analysis indicated that the symbiotic epibionts, together with only a few free-living strains, form a cluster within the green sulfur bacterial radiation which is only distantly related to the majority of known representatives of this phylum. Consortia with identical morphology but different origin exhibited significant differences in their partial 16S rRNA gene sequences, which could be confirmed by analysis of the 16S rRNA secondary structure. The phylogenetic affiliation of the chemotrophic central rod-shaped bacterium of "C. aggregatum" and "C. magnum" was analyzed by fluorescent in situ hybridization. According to our results and contrary to earlier assumptions, the central bacterium is a member of the beta-subgroup of the Proteobacteria.


Subject(s)
Bacteria/classification , Bacteria/genetics , Phylogeny , Base Sequence , DNA Probes/genetics , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Nucleic Acid Hybridization , Phenotype , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics
2.
J Bacteriol ; 178(15): 4597-603, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8755890

ABSTRACT

Although nitrate stimulated the capacity of Clostridium thermoautotrophicum and Clostridium thermoaceticum to oxidize (utilize) substrates under heterotrophic conditions, it inhibited autotrophic H2-CO2-dependent growth. Under basal medium conditions, nitrate was also inhibitory to the use of one-carbon substrates (i.e., CO, formate, methanol, or the O-methyl groups of vanillate or syringate) as sole carbon energy sources. This inhibitory effect of nitrate was bypassed when both O-methyl groups and CO were provided concomitantly; H2-CO2 did not replace CO. These results indicated that nitrate blocked the reduction of CO2 to the methyl and carbonyl levels. On the basis of the inability of acetogenic cells (i.e., cells cultivated without nitrate) to consume or reduce nitrate in resting-cell assays, the capacity to dissimilate nitrate was not constitutive. Nitrate had no appreciable effect on the specific activities of enzymes central to the acetyl-coenzyme A (CoA) pathway. However, membranes obtained from cells cultivated under nitrate-dissimilating conditions were deficient in the b-type cytochrome that was typical of membranes from acetogenic cells, i.e., cells dependent upon the synthesis of acetate for the conservation of energy. Collectively, these findings indicated that (i) C. thermoautotrophicum and C. thermoaceticum cannot engage the carbon-fixing capacities of the acetyl-CoA pathway in the presence of nitrate and (ii) the nitrate block on the acetyl-CoA pathway occurs via an alteration in electron transport.


Subject(s)
Clostridium/drug effects , Clostridium/metabolism , Nitric Acid/pharmacology , Acetyl Coenzyme A/metabolism , Carbon Dioxide/metabolism , Cell Division , Clostridium/growth & development , Culture Media , Cytochrome b Group/metabolism , Electron Transport/drug effects , Enzymes/metabolism , Hydrogen/metabolism , Interphase , Nitric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...