Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(8): 2051-2056, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35200016

ABSTRACT

The benzannulated N-heterocyclic carbene, 1,3-dibenzylbenzimidazolylidene (NHCDBZ) forms large, highly ordered domains when adsorbed on Cu(111) under ultrahigh vacuum conditions. A combination of scanning tunnelling microscopy (STM), high-resolution electron energy loss spectroscopy (HREELS), and density functional theory (DFT) calculations reveals that the overlayer consists of vertical benzannulated NHC moieties coordinating to Cu adatoms. Long-range order results from the placement of the two benzyl substituents on opposite sides of the benzimidazole moiety, with their aromatic rings approximately parallel to the surface. The organization of three surface-bound benzyl substituents from three different NHCs into a triangular array controls the formation of a highly ordered Kagome-like surface lattice. By comparison with earlier studies of NHCs on Cu(111), we show that the binding geometry and self-assembly of NHCDBZ are influenced by intermolecular and adsorbate-substrate interactions and facilitated by the flexibility of the methylene linkage between the N-heterocycle and the aromatic wingtip substituents.

2.
Langmuir ; 35(3): 608-614, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30567436

ABSTRACT

The mechanism of chemical reactions between adsorbed species is defined by the combined effects of the adsorbate-substrate potential landscape and lateral interactions. Such lateral interactions are therefore integral to catalytic processes, but their study is often complicated by "substrate mediation", the regulation of a two-body potential between adsorbed particles by the surface itself. Substrate mediation can influence the sign and magnitude of lateral interactions. There are notable exceptions of ordered structures forming at low coverage, indicative of short-range attractive forces where repulsive forces are expected to dominate, suggesting a strong substrate-mediated contribution. To explore further the origins of such interactions, we have investigated the adsorption of CO on Cu(110) using a combination of low-temperature microscopy and first-principles calculations. Our studies reveal that lateral adsorbate interactions, which are constrained by the metal surface, regulate the bonding between the adsorbate and substrate. Anisotropic CO-CO coupling is seen to arise from a perfect balance between the intermolecular accumulation of charge that acts as a glue (chemical coupling) at sufficiently large distances to avoid repulsive effects (dipole-dipole coupling and Pauli's repulsion between electron clouds).

3.
J Am Chem Soc ; 140(46): 15868-15875, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30369236

ABSTRACT

EPR studies of radical hydrogen abstraction reactions of N-heterocyclic carbene (NHC) complexes of alkenylboranes bearing two ester substituents revealed not the expected boraallyl radicals but instead isomeric 1,2-oaxborole radicals. Such radicals are new, and DFT calculations show that they arise from the initially formed boraallyl radicals by a rapid, exothermic 5- endo cyclization. These spectroscopic and computational discoveries prompted a series of preparative experiments that provided access to a novel family of robust NHC-boralactones. A one-pot procedure was developed to access the boralactones directly from an NHC-borane (NHC-BH3) and dimethyl acetylenedicarboxylate.

4.
Nano Lett ; 18(5): 2950-2956, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29613810

ABSTRACT

Modern electronic devices perform their defined action because of the complete reliability of their individual active components (transistors, switches, diodes, and so forth). For instance, to encode basic computer units (bits) an electrical switch can be used. The reliability of the switch ensures that the desired outcome (the component's final state, 0 or 1) can be selected with certainty. No practical data storage device would otherwise exist. This reliability criterion will necessarily need to hold true for future molecular electronics to have the opportunity to emerge as a viable miniaturization alternative to our current silicon-based technology. Molecular electronics target the use of single-molecules to perform the actions of individual electronic components. On-demand final state control over a bistable unimolecular component has therefore been one of the main challenges in the past decade (1-5) but has yet to be achieved. In this Letter, we demonstrate how control of the final state of a surface-supported bistable single molecule switch can be realized. On the basis of the observations and deductions presented here, we further suggest an alternative strategy to achieve final state control in unimolecular bistable switches.

5.
Chemistry ; 23(57): 14358-14366, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28783869

ABSTRACT

Synthetic self-assembly is a powerful technique for the bottom-up construction of discrete and well-defined polyhedral nanostructures resembling the spherical shape of large biological systems. In recent years, numerous Archimedean-shaped coordination cages have been reported based on the assembly of bent monodentate organic ligands containing two or more distal pyridyl rings and square-planar PdII ions. The formation of photoactive PdII metallamacrocycles and cages, however, remain rare. Here we report the first examples of emissive and homochiral supramolecular cages of the form [Ir8 Pd4 ]16+ . These cages provide a suitably sized cavity to host large guest molecules. Importantly, encapsulation and energy transfer have been observed between the blue-emitting NBu4 [Ir(dFppy)2 (CN)2 ] guest and the red-emitting Δ8 -[Ir8 Pd4 ]16+ cage.

6.
Langmuir ; 31(1): 262-71, 2015.
Article in English | MEDLINE | ID: mdl-25495197

ABSTRACT

Nickel nanoparticles modified by the adsorption of chiral amino acids are known to be effective enantioselective heterogeneous catalysts. The leaching of nickel by amino acids has a number of potential effects including the induction of chirality in the nickel atoms left behind in the nanoparticle and the creation of catalytically active nickel complexes. The adsorption of (S)-proline onto Au(111) precovered by two-dimensional nickel nanoclusters was investigated by scanning tunneling microscopy, X-ray photoelectron spectroscopy, and high-resolution electron energy loss spectroscopy. Adsorption of (S)-proline at 300 K resulted in the corrosion of the nickel clusters, the oxidation of the leached nickel, and the on-surface formation of bioinorganic complexes, which are concluded to contain three prolinate species in an octahedral arrangement around the central Ni ion. Two distinguishable forms of nickel prolinate complexes were identified. One form self-assembles into 1-D chains, and the other form gives rise to porous 2-D islands. Octahedral complexes of the type M(AB)3 are intrinsically chiral, resulting in two pairs of enantiomers. The mirror symmetry of each pair of enantiomers is broken when, as in this study, the bidentate ligand itself possesses a chiral center. DFT calculations are used to examine the relative energies of each Ni(prolinate)3 complex as isolated gas phase species and isolated adsorbed species.


Subject(s)
Coordination Complexes/chemistry , Gold/chemistry , Nickel/chemistry , Proline/chemistry , Quantum Theory , Adsorption , Microscopy, Scanning Tunneling , Molecular Structure , Pyrrolidonecarboxylic Acid/chemistry
7.
Chem Commun (Camb) ; 50(70): 10140-3, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25051335

ABSTRACT

A dihydro-TTF derivative with four acetyl-protected thiol ligands was synthesised and adsorbed on Au(111) under UHV conditions. Scanning Tunnelling Microscopy (STM) and Infrared (IR) spectroscopy show that self-organised structures are formed following annealing to 333 K, with each pair of bidentate thiolate ligands bonding to a single gold adatom in a S-Auad-S complex. Due to the lack of a direct orbital overlap between the dihydro-TTF moieties and the surface, relatively little charge transfer between TAT-TTF and the gold surface occurs.

8.
Chemistry ; 15(11): 2687-92, 2009 Mar 02.
Article in English | MEDLINE | ID: mdl-19177476

ABSTRACT

A riddle solved! Despite its simple formula, the structure of the (SCN)(x) polymer has remained elusive since its first synthesis in 1929. From energetics as well as NMR chemical shifts, based on DFT calculations, we have strong evidence that it is indeed a tangle of linear chains, made up from N-linked S(2)C(2)N five-membered rings.Molecular fragments and crystal structures based on proposed structures for polythiocyanogen were studied by using molecular and solid-state electronic structure calculations at the density functional theory level. The energetics and chemical shifts from both types of calculations indicate that a planar N-linked chain consisting of 1,2,4-dithiazole five-membered rings with adjacent rings pointing in opposite directions is the most likely local structure of the (SCN)(x) polymer.

SELECTION OF CITATIONS
SEARCH DETAIL
...