Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Methods Enzymol ; 647: 107-143, 2021.
Article in English | MEDLINE | ID: mdl-33482986

ABSTRACT

The use of enzymes in organic synthesis is highly appealing due their remarkably high chemo-, regio- and enantioselectivity. Nevertheless, for biosynthetic routes to be industrially useful, the enzymes must fulfill several requirements. Particularly, in case of cofactor-dependent enzymes self-sufficient systems are highly valuable. This can be achieved by fusing enzymes with complementary cofactor dependency. Such bifunctional enzymes are also relatively easy to handle, may enhance stability, and promote product intermediate channeling. However, usually the characteristics of the linker, fusing the target enzymes, are not thoroughly evaluated. A poor linker design can lead to detrimental effects on expression levels, enzyme stability and/or enzyme performance. In this chapter, the effect of the length of a glycine-rich linker was explored for the case study of ɛ-caprolactone synthesis through an alcohol dehydrogenase-cyclohexanone monooxygenase fusion system. The procedure includes cloning of linker variants, expression analysis, determination of thermostability and effect on activity and conversion levels of 15 variants of different linker sizes. The protocols can also be used for the creation of other protein-protein fusions.


Subject(s)
Alcohol Dehydrogenase , Oxygenases , Alcohol Dehydrogenase/genetics , Enzyme Stability , Oxygenases/genetics , Oxygenases/metabolism
2.
Sci Rep ; 8(1): 17571, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30514849

ABSTRACT

During the last decade the number of characterized F420-dependent enzymes has significantly increased. Many of these deazaflavoproteins share a TIM-barrel fold and are structurally related to FMN-dependent luciferases and monooxygenases. In this work, we traced the origin and evolutionary history of the F420-dependent enzymes within the luciferase-like superfamily. By a thorough phylogenetic analysis we inferred that the F420-dependent enzymes emerged from a FMN-dependent common ancestor. Furthermore, the data show that during evolution, the family of deazaflavoproteins split into two well-defined groups of enzymes: the F420-dependent dehydrogenases and the F420-dependent reductases. By such event, the dehydrogenases specialized in generating the reduced deazaflavin cofactor, while the reductases employ the reduced F420 for catalysis. Particularly, we focused on investigating the dehydrogenase subfamily and demonstrated that this group diversified into three types of dehydrogenases: the already known F420-dependent glucose-6-phosphate dehydrogenases, the F420-dependent alcohol dehydrogenases, and the sugar-6-phosphate dehydrogenases that were identified in this study. By reconstructing and experimentally characterizing ancestral and extant representatives of F420-dependent dehydrogenases, their biochemical properties were investigated and compared. We propose an evolutionary path for the emergence and diversification of the TIM-barrel fold F420-dependent dehydrogenases subfamily.


Subject(s)
Archaea/enzymology , Archaeal Proteins/classification , Bacteria/enzymology , Bacterial Proteins/classification , Evolution, Molecular , Oxidoreductases/classification , Riboflavin/analogs & derivatives , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Escherichia coli/genetics , Oxidoreductases/chemistry , Oxidoreductases/genetics , Phylogeny , Riboflavin/chemistry , Substrate Specificity
3.
AMB Express ; 3(1): 33, 2013 06 14.
Article in English | MEDLINE | ID: mdl-23767684

ABSTRACT

The presence of several putative Baeyer-Villiger Monooxygenases (BVMOs) encoding genes in Aspergillus fumigatus Af293 was demonstrated for the first time. One of the identified BVMO-encoding genes was cloned and successfully overexpressed fused to the cofactor regenerating enzyme phosphite dehydrogenase (PTDH). The enzyme named BVMOAf1 was extensively characterized in terms of its substrate scope and essential kinetic features. It showed high chemo-, regio- and stereoselectivity not only in the oxidation of asymmetric sulfides, (S)-sulfoxides were obtained with 99% ee, but also in the kinetic resolution of bicyclo[3.2.0]hept-2-en-6-one. This kinetic resolution process led to the production of (1S,5R) normal lactone and (1R,5S) abnormal lactone with a regioisomeric ratio of 1:1 and 99% ee each. Besides, different reaction conditions, such as pH, temperature and the presence of organic solvents, have been tested, revealing that BVMOAf1 is a relatively robust biocatalyst.

SELECTION OF CITATIONS
SEARCH DETAIL