Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 66(1): 233-42, 2001 Jan 12.
Article in English | MEDLINE | ID: mdl-11429905

ABSTRACT

A synthesis of the bicyclo[2.1.1]hexane substructure of solanoeclepin A (1), the most active natural hatching agent of potato cyst nematodes, was approached via an intramolecular [2 + 2] photocycloaddition. Aldehyde 12 containing the dioxenone chromophore served as a useful starting material, allowing the synthesis of a variety of photocycloaddition substrates via Grignard addition or via a Nozaki-Hiyama-Kishi reaction. Photolysis of the unsubstituted alkene 14 led to the expected crossed cycloadduct bicyclo[2.1.1]hexane 15 according to the so-called rule of five. However, several functionalized alkenes 18, 20, and 31 exhibited a complete reversal of cycloaddition regioselectivity, providing straight cycloadducts bicyclo[2.2.0]hexanes 21-26 and 4, respectively. Their structures were proved by a combination of extensive NMR measurements, X-ray analyses, and subsequent retro-aldol reactions. The latter de Mayo process allowed the formation of spiro-[3.5]nonane 35 and spiro[3.4]octane 36 as well as the cyclobutanes 37 and 38. Finally, the cyclization of the more rigid lactone precursor 28 occurred in high yield in the desired fashion with complete regio- and stereoselectivity to give 3 containing the core bicyclo[2.1.1]hexane skeleton of the natural product.


Subject(s)
Antinematodal Agents/chemistry , Bridged-Ring Compounds/chemistry , Hexanes/chemistry , Antinematodal Agents/chemical synthesis , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Bridged-Ring Compounds/chemical synthesis , Cyclization , Hexanes/chemical synthesis , Photochemistry
2.
Inorg Chem ; 40(14): 3363-72, 2001 Jul 02.
Article in English | MEDLINE | ID: mdl-11421681

ABSTRACT

X-ray crystal structures of a series of cationic (P-P)palladium(1,1-(CH(3))(2)C(3)H(3)) complexes (P-P = dppe (1,2-bis(diphenylphosphino)ethane), dppf (1,1'-bis(diphenylphosphino)ferrocene), and DPEphos (2,2'-bis(diphenylphosphino)diphenyl ether)) and the (Xantphos)Pd(C(3)H(5))BF(4) (Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) complex have been determined. In the solid state structure, the phenyl rings of the ligand are oriented in the direction of the nonsymmetrically bound [1,1-(CH(3))(2)C(3)H(3)] moiety. An increase of the bite angle of the chelating ligand results in an increase of the cone angle. In complexes containing ligands having a large cone angle, the distances between the phenyl rings and the allyl moiety become small, resulting in a distortion of the symmetry of the palladium-allyl bond. In solution, two types of dynamic exchange have been observed, the pi-sigma rearrangement and the apparent rotation of the allyl moiety. At the same time, the folded structure of the ligand changes from an endo to an exo orientation or vice versa. The regioselectivity in the palladium-catalyzed allylic alkylation of 3-methyl-but-2-enyl acetate is determined by the cone angle of the bidentate phosphine ligand. Nucleophilic attack by a malonate anion takes place preferentially at the allylic carbon atom having the largest distance to palladium. Ligands with a larger cone angle direct the regioselectivity to the formation of the branched product, from 8% for dppe (1) to 61% found for Xantphos (6). The influence of the cone angle on the regioselectivity has been assigned to a sterically induced electronic effect.

3.
J Org Chem ; 65(16): 4810-7, 2000 Aug 11.
Article in English | MEDLINE | ID: mdl-10956456

ABSTRACT

A series of chiral phosphine-phosphite ligands 1-6 have been synthesized and used in the enantioselective palladium-catalyzed reaction of rac-1,3-diphenyl-2-propenyl acetate with dimethyl malonate as nucleophile. Ligands 1a, 2, 3, 5a, 6a, and 6b have been synthesized starting from racemic tert-butylphenylphosphinoborane. The use of dynamically resolved Li phosphide (-)-sparteine provided the optically pure ligands. Crystals of the allylpalladium (6a) complex were obtained, suitable for X-ray crystal structure determination. The X-ray crystal structure of the allylpalladium (6a) complex revealed a longer palladium-carbon bond distance trans to the phosphine moiety indicating that the attack of the nucleophile takes place at the carbon trans to the phosphine moiety. This was confirmed by the fact that the phosphine moiety did not affect the enantioselectivity directly. Under mild reaction conditions, enantioselectivities up to 83% were obtained (25 degrees C) with ligand 1e. Systematic variation of the ligand bridge and the phosphite moiety showed that the configuration of the product is controlled by the atropisomerism of the biphenyl substituent at the phosphite moiety. The conformation of the biphenyl group, in turn, is controlled by the substituent at the chiral carbon in the bridge. Ligands with large bite angles yielded higher enantioselectivities.

4.
J Chromatogr ; 209(3): 369-76, 1981 May 22.
Article in English | MEDLINE | ID: mdl-7251723

ABSTRACT

The retention behaviour of nucleobases and nucleosides in dynamic cation-exchange systems, consisting of a hydrophobic support as the stationary phase and water-ethanol mixtures containing small amounts of sodium dodecylsulphate as anionic detergent as the mobile phase was investigated. The retention of nucleobases and nucleosides can be influenced over a wide range by variation of the pH and the concentration of the ethanol, anionic detergent and counter ion in the eluent. With respect to separation speed and selectivity, these dynamic cation-exchange systems are in many instances superior to conventional ion-exchange and reversed-phase systems. It is shown that, by optimizing the different retention parameters, the separation of fourteen nucleobases and nucleosides, simultaneously and under isocratic conditions, can be achieved in ca. 6 min. The performance of the phase system is demonstrated by the analysis of a calf thymus DNA hydrolysate.


Subject(s)
Chromatography, High Pressure Liquid/methods , Nucleosides/analysis , Thymus Gland/analysis , Animals , Cattle , Purines/analysis , Pyrimidines/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...