Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(13): 7511-7516, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38517735

ABSTRACT

The determination of odor threshold values can be performed in various matrices, including air, and serves as a parameter to compare the potencies of odorous compounds. Typically, the odor thresholds in air are determined by gas chromatography-olfactory (GC-O) and referenced to an internal standard, most often (E)-dec-2-enal. Herein, a direct gas chromatography-flame ionization detector-olfactory analysis method for the determination of odor thresholds in air is reported. As model substrates for this novel approach, naturally occurring substances (R)-1-p-menthene-8-thiol as well as (3S,3aS,6R,7aS)-3,6-dimethyl-3a,4,5,6,7,7a-hexahydro-3H-1-benzofuran-2-one were used. The latter compound was synthesized from (-)-isopulegol and exhibited an extremely low odor recognition threshold of 1.9 × 10-6 ng L-1 air, the lowest value reported for a fungal aroma compound thus far.


Subject(s)
Odorants , Volatile Organic Compounds , Odorants/analysis , Gas Chromatography-Mass Spectrometry , Smell , Chromatography, Gas , Flame Ionization , Volatile Organic Compounds/chemistry
2.
J Agric Food Chem ; 71(21): 8083-8092, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37163258

ABSTRACT

Basidiomycota are natural sources of aroma compounds. When grown in submerged cultures, the fungus Laetiporus montanus (LMO) forms a spicy and meat-like aroma. It thus represents an interesting candidate for the production of natural savory flavors. To identify the key aroma compounds of LMO grown submerged in malt extract peptone medium, the volatiles were isolated by means of automated solvent assisted flavor evaporation (aSAFE). An aroma extract dilution analysis was performed by means of gas chromatography-olfactometry coupled with a flame ionization detector (GC-FID-O). In the aSAFE extract of LMO, 24 aroma-active compounds were detected. 5-Butyl-2(5H)-furanone (FD 4096), perceived as coconut-like, was determined as the compound with the highest FD factor. (E,E)-2,4-Decadienal, (E,Z)-2,4-decadienal, and sotolon were identified as responsible key compounds for the spicy odor of the submerged cultures. Moreover, supplementation of the cultures of LMO, Laetiporus sulphureus, and Laetiporus persicinus with 13C-labeled thiamine hydrochloride resulted in the formation of 2-methyl-3-(methylthio)furan (MMTF), a compound with a pronounced meaty flavor. The concentrations of MMTF were further increased to 19-27 µg L-1 by additional supplementation of the cultures with ascorbic acid. The results of this study indicate potential for the biotechnological production of a meat-like flavor by Laetiporus species.


Subject(s)
Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds/analysis , Meat/analysis , Odorants/analysis , Olfactometry , Plant Extracts
3.
J Agric Food Chem ; 71(20): 7744-7751, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37172111

ABSTRACT

Among the monoterpenoid aroma compounds formed by the basidiomycete Cystostereum murrayi are highly potent bicyclic benzofuran derivatives. In addition to the dill ethers previously described in a few fungi, two stereoisomers of the rare 3,6-dimethyl-3a,4,5,6,7,7a-hexahydro-3H-1-benzofuran-2-one (1a and 2c), also known as dihydromenthofurolactones, and a C3-unsaturated analogue (3a) are formed by C. murrayi. The analysis of synthesized reference standards of the lactones allowed an unambiguous assignment of the stereoisomers formed by the fungus. Despite a similar structure, two key differences in the stereochemistry of the lactones and dill ethers emerged. The analysis of submerged cultures further revealed the formation of additional, so far unknown, fungal terpenoids, including limonen-10-ol (7) and the corresponding aldehyde limonen-10-al (8). Analysis of chiral terpenoids as well as supplementation studies, including stable isotope-labeled compounds, indicated independent biogenesis pathways for dill ethers and lactones.


Subject(s)
Anethum graveolens , Benzofurans , Odorants/analysis , Lactones/chemistry , Monoterpenes , Ethers
4.
J Agric Food Chem ; 70(23): 7220-7229, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35642795

ABSTRACT

Terpenes may be converted by electrochemical oxidation to various oxidized products with appealing aroma properties. In this study, (R)-limonene was anodically oxidized in the presence of ethanol, and the resulting mixture exhibited a pleasing fruity, herbal, citrus-like, and resinous odor. The aroma-active compounds were purified by means of preparative high-performance liquid chromatography, and their structures were elucidated by means of gas chromatography (GC)-mass spectrometry and nuclear magnetic resonance spectroscopy. In addition, the odor of the isolated compounds was determined by means of GC-olfactometry. Seventeen compounds were isolated, and for only four of them, analytical data had been reported previously in the literature. Furthermore, only for two of the compounds, an odor description had been available in the literature.


Subject(s)
Citrus , Volatile Organic Compounds , Citrus/chemistry , Gas Chromatography-Mass Spectrometry/methods , Limonene , Odorants/analysis , Olfactometry/methods , Volatile Organic Compounds/chemistry
5.
Molecules ; 27(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35744956

ABSTRACT

Several non-canonical, methylated terpenes have been described as products of genetically modified Escherichia coli recently, and the aroma properties of 28 odor-active methylated derivatives of prenol, isoprenol, bornane, camphene, carene, citronellol, fenchol, geraniol, limonene, linalool, terpineol, and farnesol were characterized for the first time in the current study. Twelve methylated monoterpenes exhibited a particularly intense and pleasant odor and were therefore chosen for the determination of their respective odor thresholds (OTs) in comparison to their non-methylated equivalents. In addition to the determination of OTs based on the literature value for the internal standard, (2E)-decenal, the threshold values of the compounds with individually determined OTs of the participants were calculated. This enabled a more precise identification of the OTs. Among the non-canonical terpenes, the lowest OTs in the air were found for 2-methyllinalool (flowery, 1.8 ng L-1), 2-methyl-α-fenchol (moldy, 3.6 ng L-1), 2-methylgeraniol (flowery, 5.4 ng L-1), 2-methylcitronellol (citrus-like, 7.2 ng L-1), and 4-methylgeraniol (citrus-like, 16 ng L-1). The derivatives of geraniol, linalool, and citronellol showed very pleasant odor impressions, which could make them interesting for use as flavoring agents in the flavor and fragrance industry.


Subject(s)
Odorants , Perfume , Humans , Limonene , Monoterpenes , Terpenes
6.
Molecules ; 27(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35163915

ABSTRACT

The production of natural flavors by means of microorganisms is of great interest for the food and flavor industry, and by-products of the agro-industry are particularly suitable as substrates. In the present study, Citrus side streams were fermented using monokaryotic strains of the fungus Pleurotus sapidus. Some of the cultures exhibited a pleasant smell, reminiscent of woodruff and anise, as well as herbaceous notes. To evaluate the composition of the overall aroma, liquid/liquid extracts of submerged cultures of a selected monokaryon were prepared, and the volatiles were isolated via solvent-assisted flavor evaporation. Aroma extract dilution analyses revealed p-anisaldehyde (sweetish, anisic- and woodruff-like) with a flavor dilution factor of 218 as a character impact compound. The coconut-like, herbaceous, and sweetish smelling acyloin identified as (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone also contributed to the overall aroma and was described as an aroma-active substance with an odor threshold in air of 0.2 ng L-1 to 2.4 ng L-1 for the first time. Supplementation of the culture medium with isotopically substituted l-tyrosine elucidated this phenolic amino acid as precursor of p-anisaldehyde as well as of (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone. Chiral analysis via HPLC revealed an enantiomeric excess of 97% for the isolated product produced by P. sapidus.


Subject(s)
Citrus , Pimpinella , Volatile Organic Compounds , Odorants/analysis , Pleurotus , Rivers , Volatile Organic Compounds/chemistry
7.
J Agric Food Chem ; 69(47): 14222-14230, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34786939

ABSTRACT

Brown-rot fungi are particularly suitable for the sustainable and cost-efficient biotechnological production of natural flavors. In this study, Wolfiporia cocos was employed for the fermentation of European black currant pomace supplemented with aspartate in surface cultures to produce a flavor reminiscent of wild strawberries. Aroma dilution analysis (ADA) by means of dynamic headspace extraction was developed as a suitable technique for solid samples. The character impact compounds were quantified by stable isotope dilution analysis and standard addition and validated by recombination experiments. (R)-Linalool (1879 µg kg-1, ADA 211), methyl anthranilate (2206 µg kg-1, 210), 2-aminobenzaldehyde (771 µg kg-1, 25), and geraniol (138 µg kg-1, 25) were identified as key aroma compounds. Recombination experiments demonstrated that the combination of the four analyzed compounds was responsible for the odor impression reminiscent of wild strawberries.


Subject(s)
Volatile Organic Compounds , Wolfiporia , Flavoring Agents/analysis , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Volatile Organic Compounds/analysis
8.
J Agric Food Chem ; 69(21): 5997-6004, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34008976

ABSTRACT

Submerged cultures of the basidiomycota Cystostereum murrayi emit an intensive coconut-like, sweetish, and buttery smell. For identification of the key aroma compounds, an aroma dilution analysis using dynamic headspace was performed by adjusting the split ratio of the GC inlet system. Flavor dilution (FD) factors varied from 22 up to ≥218, whereby the largest class of compounds represented terpenoids, including two rare stereoisomers of 3,6-dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran (dill ether, ee ≥ 99.9). By means of nuclear magnetic resonance spectroscopy, the substances with the highest FD factors (29, 212, and 218) were identified as diastereomers of 3,6-dimethyl-3a,4,5,6,7,7a-hexayhydro-3H-1-benzofuran-2-one (dihydromenthofurolactone) and as its corresponding C3-unsaturated lactone. The latter two compounds have not been described for Cystostereum murrayi or for any other basidiomycota previously. Supplementation studies using 2-13C-d-glucose indicated that these lactones as well as the two stereoisomers of dill ether and other terpenoids were formed de novo by the fungus.


Subject(s)
Odorants , Volatile Organic Compounds , Agaricales , Flavoring Agents , Indicator Dilution Techniques , Odorants/analysis , Smell
9.
J Agric Food Chem ; 69(1): 345-353, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33350305

ABSTRACT

Lipid extracts of the fungus Flammulina velutipes were found to contain various scarce fatty acids including dodec-11-enoic acid and di- and tri-unsaturated C16 isomers. A biotechnological approach using a heterologously expressed carboxylic acid reductase was developed to transform the fatty acids into the respective aldehydes, yielding inter alia dodec-11-enal. Supplementation studies gave insights into the fungal biosynthesis of this rarely occurring acid and suggested a terminal desaturation of lauric acid being responsible for its formation. A systematic structure-odor relationship assessment of terminally unsaturated aldehydes (C7-C13) revealed odor thresholds in the range of 0.24-22 µg/L in aqueous solution and 0.039-29 ng/L in air. In both cases, non-8-enal was identified as the most potent compound. All aldehydes exhibited green odor qualities. Short-chained substances were additionally associated with grassy, melon-, and cucumber-like notes, while longer-chained homologs smelled soapy and coriander leaf-like with partly herbaceous nuances. Dodec-11-enal turned out to be of highly pleasant scent without off-notes.


Subject(s)
Aldehydes/chemistry , Biotechnology/methods , Adult , Biocatalysis , Fatty Acids/chemistry , Female , Flammulina/chemistry , Humans , Male , Oxidoreductases/chemistry , Smell , Young Adult
10.
Biomolecules ; 10(9)2020 08 31.
Article in English | MEDLINE | ID: mdl-32878262

ABSTRACT

The study aimed to test the hypothesis that monomethyl branched-chain fatty acids (BCFAs) and a lipid extract of Conidiobolus heterosporus (CHLE), rich in monomethyl BCFAs, are able to activate the nuclear transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha). Rat Fao cells were incubated with the monomethyl BCFAs 12-methyltridecanoic acid (MTriA), 12-methyltetradecanoic acid (MTA), isopalmitic acid (IPA) and 14-methylhexadecanoic acid (MHD), and the direct activation of PPARalpha was evaluated by reporter gene assay using a PPARalpha responsive reporter gene. Furthermore, Fao cells were incubated with different concentrations of the CHLE and PPARalpha activation was also evaluated by using the reporter gene assay, and by determining the mRNA concentrations of selected PPARalpha target genes by real-time RT-PCR. The reporter gene assay revealed that IPA and the CHLE, but not MTriA, MHD and MTA, activate the PPARalpha responsive reporter gene. CHLE dose-dependently increased mRNA concentrations of the PPARalpha target genes acyl-CoA oxidase (ACOX1), cytochrome P450 4A1 (CYP4A1), carnitine palmitoyltransferase 1A (CPT1A) and solute carrier family 22 (organic cation/carnitine transporter), member 5 (SLC22A5). In conclusion, the monomethyl BCFA IPA is a potent PPARalpha activator. CHLE activates PPARalpha-dependent gene expression in Fao cells, an effect that is possibly mediated by IPA.


Subject(s)
Conidiobolus/chemistry , Fatty Acids/metabolism , PPAR alpha/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Gene Expression Regulation , Genes, Reporter , PPAR alpha/agonists , Rats
11.
J Agric Food Chem ; 68(38): 10432-10440, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32396373

ABSTRACT

As a result of their pleasant odor qualities and low odor thresholds, iso- and anteiso-fatty aldehydes represent promising candidates for applications in flavoring preparations. A novel cyanobacterial α-dioxygenase from Crocosphaera subtropica was heterologously expressed in Escherichia coli and applied for the biotechnological production of C12-C15 branched-chain fatty aldehydes. The enzyme has a sequence identity of less than 40% to well-investigated α-dioxygenase from rice. Contrary to the latter, it efficiently transformed short-chained fatty acids. The kinetic parameters of α-dioxygenase toward unbranched and iso-branched-chain substrates were studied by means of an oxygen-depletion assay. The transformation products (C12-C15 iso- and anteiso-aldehydes) were extensively characterized, including their sensory properties. The aldehydes exhibited green-soapy, sweety odors with partial citrus-like, metallic, peppery, and savory-tallowy nuances. Moreover, the two C14 isomers showed particularly low odor threshold values of 0.2 and 0.3 ng/L in air as determined by means of gas chromatography-olfactometry.


Subject(s)
Aldehydes/chemistry , Bacterial Proteins/chemistry , Cyanobacteria/enzymology , Dioxygenases/chemistry , Flavoring Agents/chemistry , Aldehydes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Cyanobacteria/chemistry , Cyanobacteria/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Flavoring Agents/metabolism , Gas Chromatography-Mass Spectrometry , Kinetics , Odorants/analysis , Olfactometry
12.
J Agric Food Chem ; 67(49): 13460-13469, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-30997799

ABSTRACT

Fermentation broths of Ashbya gossypii from the industrial production of riboflavin emit an intense floral, fruity, and nutty smell. Typical Ehrlich pathway products, such as 2-phenylethan-1-ol and 2-/3-methylbutan-1-ol, were detected in large amounts as well as some intensely smelling saturated and unsaturated lactones, e.g., γ-decalactone and γ-(Z)-dodec-6-enlactone. An aroma extract dilution analysis identified 2-phenylethan-1-ol and γ-(Z)-dodec-6-enlactone as the main contributors to the overall aroma, with flavor dilution factors of 32 768. The position of the double bonds of unsaturated lactones was determined by the Paternò-Büchi reaction, and reference compounds that were not available commercially were synthesized to elucidate the structures of the uncommon lactones. The absolute configuration and enantiomeric excess values of the lactones were determined by converting the lactones to their corresponding Mosher's esters. In addition, the odor impressions and odor thresholds in air were determined.


Subject(s)
Culture Media/chemistry , Eremothecium/metabolism , Lactones/metabolism , Riboflavin/biosynthesis , Culture Media/metabolism , Fermentation , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Lactones/chemistry , Riboflavin/chemistry
13.
Adv Biochem Eng Biotechnol ; 169: 85-107, 2019.
Article in English | MEDLINE | ID: mdl-30828753

ABSTRACT

Filamentous fungi have been used since centuries in the production of food by means of solid substrate fermentation (SSF). The most applied SSF involving fungi is the cultivation of mushrooms, e.g., on tree stumps or sawdust, for human consumption. However, filamentous fungi are also key players during manufacturing of several processed foods, like mold cheese, tempeh, soy sauce, and sake. In addition to their nutritive values, these foods are widely consumed due to their pleasant flavors. Based on the potentials of filamentous fungi to grow on solid substrates and to produce valuable aroma compounds, in recent decades, several studies concentrated on the production of aroma compounds with SSF, turning cheap agricultural wastes into valuable flavors. In this review, we focus on the presentation of common analytical methods for volatile substances and highlight various applications of SSF of filamentous fungi dealing with the production of aroma compounds. Graphical Abstract.


Subject(s)
Fungi , Odorants , Fermentation , Fungi/chemistry , Fungi/growth & development , Humans , Odorants/analysis , Taste
14.
Article in English | MEDLINE | ID: mdl-28955451

ABSTRACT

BACKGROUND: Pleurotus sapidus secretes a huge enzymatic repertoire including hydrolytic and oxidative enzymes and is an example for higher basidiomycetes being interesting for biotechnology. The complex growth media used for submerged cultivation limit basic physiological analyses of this group of organisms. Using undefined growth media, only little insights into the operation of central carbon metabolism and biomass formation, i.e., the interplay of catabolic and anabolic pathways, can be gained. RESULTS: The development of a chemically defined growth medium allowed rapid growth of P. sapidus in submerged cultures. As P. sapidus grew extremely slow in salt medium, the co-utilization of amino acids using 13C-labelled glucose was investigated by gas chromatography-mass spectrometry (GC-MS) analysis. While some amino acids were synthesized up to 90% in vivo from glucose (e.g., alanine), asparagine and/or aspartate were predominantly taken up from the medium. With this information in hand, a defined yeast free salt medium containing aspartate and ammonium nitrate as a nitrogen source was developed. The observed growth rates of P. sapidus were well comparable with those previously published for complex media. Importantly, fast growth could be observed for 4 days at least, up to cell wet weights (CWW) of 400 g L-1. The chemically defined medium was used to carry out a 13C-based metabolic flux analysis, and the in vivo reactions rates in the central carbon metabolism of P. sapidus were investigated. The results revealed a highly respiratory metabolism with high fluxes through the pentose phosphate pathway and TCA cycle. CONCLUSIONS: The presented chemically defined growth medium enables researchers to study the metabolism of P. sapidus, significantly enlarging the analytical capabilities. Detailed studies on the production of extracellular enzymes and of secondary metabolites of P. sapidus may be designed based on the reported data.

15.
Food Chem ; 141(3): 2952-9, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23871045

ABSTRACT

Altogether 30 different basidiomycetes were grown submerged in liquid culture media using seven different by-products of the food industry as the only carbon source. Seven fungus/substrate combinations revealed interesting flavour profiles. Culture supernatants of Tyromyces chioneus grown on apple pomace were extracted, and the aroma compounds were analysed by gas chromatography-olfactometry (GC-O). Potent odorants were identified by aroma extract dilution analysis (AEDA), calculation of the odour activity values (OAV), and proven by confection of an aroma model. 3-Phenylpropanal, 3-phenyl-1-propanol, and benzyl alcohol were identified as potent aroma biotransformation products. Headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) experiments showed that 3-phenylpropanal, 3-phenyl-1-propanol, benzyl alcohol, methyl 3-phenylpropionate, methyl 2-phenylacetate, cinnamaldehyde and methyl cinnamate were produced during the cultivation period of eight days. By means of labelling experiments, (E)-cinnamic acid was identified as the precursor of 3-phenylpropanal and 3-phenyl-1-propanol. Basidiomycetes were able to biotransform food by-products to pleasant complex flavour mixtures.


Subject(s)
Basidiomycota/metabolism , Flavoring Agents/metabolism , Malus/metabolism , Waste Products/analysis , Biotransformation , Flavoring Agents/chemistry , Gas Chromatography-Mass Spectrometry , Malus/chemistry , Odorants/analysis
16.
J Agric Food Chem ; 57(21): 9944-50, 2009 Nov 11.
Article in English | MEDLINE | ID: mdl-19817425

ABSTRACT

The enzymatic conversion of alpha-pinene to verbenols, verbenone, and minor volatile flavors was studied using submerged cultured cells, lyophilisate, and microsomal fractions of the edible basidiomycete Pleurotus sapidus . The similarity of the product range obtained by the bioconversions with the range of products found after autoxidation of alpha-pinene at 100 degrees C suggested similar initial pinene radicals. Extracts of the bioconversions were analyzed using thin layer chromatography with hydroperoxide staining and cool on-column capillary gas chromatography-mass spectrometry. Two isomer alpha-pinene hydroperoxides were identified as the key intermediates and their structures confirmed by comparison with synthesized reference samples and by microchemical reduction to (Z)- and (E)-verbenol. When the biocatalysts were supplemented with one of the verbenols, only the (Z)-isomer was oxidized, indicating the activity of a highly stereospecific monoterpenol dehydrogenase. The structural comparison of subunits shows that fungal oxifunctionalization reactions of some common terpene substrates, such as (+)-limonene or (+)-valencene, might likewise be catalyzed by dioxygenases rather than by CYP450 enzymes, as previously assumed.


Subject(s)
Flavoring Agents/metabolism , Monoterpenes/metabolism , Pleurotus/metabolism , Bicyclic Monoterpenes , Biotransformation , Flavoring Agents/chemistry , Fungal Proteins/metabolism , Monoterpenes/chemistry , Oxidation-Reduction , Oxidoreductases/metabolism , Pleurotus/chemistry , Pleurotus/enzymology , Stereoisomerism
17.
Appl Microbiol Biotechnol ; 83(1): 35-41, 2009 May.
Article in English | MEDLINE | ID: mdl-19333595

ABSTRACT

Due to its pleasant grapefruit-like aroma and various further interesting molecular characteristics, (+)-nootkatone represents a highly sought-after specialty chemical. (+)-Nootkatone is accumulated in its producer plants in trace amounts only, and the demand of the food, cosmetics and pharmaceutical industry is currently predominantly met by chemical syntheses. These typically require environmentally critical reagents, catalysts and solvents, and the final product must not be marketed as a "natural flavour" compound. Both the market pull and the technological push have thus inspired biotechnologists to open up more attractive routes towards natural (+)-nootkatone. The multifaceted approaches for the de novo biosynthesis or the biotransformation of the precursor (+)-valencene to (+)-nootkatone are reviewed. Whole-cell systems of bacteria, filamentous fungi and plants, cell extracts or purified enzymes have been employed. A prominent biocatalytic route is the allylic oxidation of (+)-valencene. It allows the production of natural (+)-nootkatone in high yields under mild reaction conditions. The first sequence data of (+)-valencene-converting activities have just become known.


Subject(s)
Flavoring Agents/metabolism , Flavoring Agents/pharmacology , Sesquiterpenes/metabolism , Sesquiterpenes/pharmacology , Bacteria/enzymology , Bacteria/metabolism , Biotechnology/methods , Cell Extracts , Fungi/metabolism , Plants/metabolism , Polycyclic Sesquiterpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...