Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732057

ABSTRACT

Implant therapy is a common treatment option in dentistry and orthopedics, but its application is often associated with an increased risk of microbial contamination of the implant surfaces that cause bone tissue impairment. This study aims to develop two silver-enriched platelet-rich plasma (PRP) multifunctional scaffolds active at the same time in preventing implant-associated infections and stimulating bone regeneration. Commercial silver lactate (L) and newly synthesized silver deoxycholate:ß-Cyclodextrin (B), were studied in vitro. Initially, the antimicrobial activity of the two silver soluble forms and the PRP enriched with the two silver forms has been studied on microbial planktonic cells. At the same time, the biocompatibility of silver-enriched PRPs has been assessed by an MTT test on human primary osteoblasts (hOBs). Afterwards, an investigation was conducted to evaluate the activity of selected concentrations and forms of silver-enriched PRPs in inhibiting microbial biofilm formation and stimulating hOB differentiation. PRP-L (0.3 µg/mm2) and PRP-B (0.2 µg/mm2) counteract Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans planktonic cell growth and biofilm formation, preserving hOB viability without interfering with their differentiation capability. Overall, the results obtained suggest that L- and B-enriched PRPs represent a promising preventive strategy against biofilm-related implant infections and demonstrate a new silver formulation that, together with increasing fibrin binding protecting silver in truncated cone-shaped cyclic oligosaccharides, achieved comparable inhibitory results on prokaryotic cells at a lower concentration.


Subject(s)
Biofilms , Osteoblasts , Platelet-Rich Plasma , Silver , Humans , Biofilms/drug effects , Silver/chemistry , Silver/pharmacology , Osteoblasts/drug effects , Osteoblasts/cytology , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Prosthesis-Related Infections/prevention & control , Prosthesis-Related Infections/microbiology , Staphylococcus epidermidis/drug effects
2.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762317

ABSTRACT

Biofilm-related peri-implant diseases represent the major complication for osteointegrated dental implants, requiring complex treatments or implant removal. Microbial biosurfactants emerged as new antibiofilm coating agents for implantable devices thanks to their high biocompatibility. This study aimed to assess the efficacy of the rhamnolipid 89 biosurfactant (R89BS) in limiting Streptococcus oralis biofilm formation and dislodging sessile cells from medical grade titanium, but preserving adhesion and proliferation of human osteoblasts. The inhibitory activity of a R89BS coating on S. oralis biofilm formation was assayed by quantifying biofilm biomass and microbial cells on titanium discs incubated up to 72 h. R89BS dispersal activity was addressed by measuring residual biomass of pre-formed biofilms after rhamnolipid treatment up to 24 h. Adhesion and proliferation of human primary osteoblasts on R89BS-coated titanium were evaluated by cell count and adenosine-triphosphate quantification, while cell differentiation was studied by measuring alkaline phosphatase activity and observing mineral deposition. Results showed that R89BS coating inhibited S. oralis biofilm formation by 80% at 72 h and dislodged 63-86% of pre-formed biofilms in 24 h according to concentration. No change in the adhesion of human osteoblasts was observed, whereas proliferation was reduced accompanied by an increase in cell differentiation. R89BS effectively counteracts S. oralis biofilm formation on titanium and preserves overall osteoblasts behavior representing a promising preventive strategy against biofilm-related peri-implant diseases.

3.
Pharmaceutics ; 15(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37631370

ABSTRACT

Biosurfactants (BSs) are microbial compounds that have emerged as potential alternatives to chemical surfactants due to their multifunctional properties, sustainability and biodegradability. Owing to their amphipathic nature and distinctive structural arrangement, biosurfactants exhibit a range of physicochemical properties, including excellent surface activity, efficient critical micelle concentration, humectant properties, foaming and cleaning abilities and the capacity to form microemulsions. Furthermore, numerous biosurfactants display additional biological characteristics, such as antibacterial, antifungal and antiviral effects, and antioxidant, anticancer and immunomodulatory activities. Over the past two decades, numerous studies have explored their potential applications, including pharmaceuticals, cosmetics, antimicrobial and antibiofilm agents, wound healing, anticancer treatments, immune system modulators and drug/gene carriers. These applications are particularly important in addressing challenges such as antimicrobial resistance and biofilm formations in clinical, hygiene and therapeutic settings. They can also serve as coating agents for surfaces, enabling antiadhesive, suppression, or eradication strategies. Not least importantly, biosurfactants have shown compatibility with various drug formulations, including nanoparticles, liposomes, micro- and nanoemulsions and hydrogels, improving drug solubility, stability and bioavailability, and enabling a targeted and controlled drug release. These qualities make biosurfactants promising candidates for the development of next-generation antimicrobial, antibiofilm, anticancer, wound-healing, immunomodulating, drug or gene delivery agents, as well as adjuvants to other antibiotics. Analysing the most recent literature, this review aims to update the present understanding, highlight emerging trends, and identify promising directions and advancements in the utilization of biosurfactants within the pharmaceutical and biomedical fields.

4.
Eur J Med Chem ; 246: 114950, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36462437

ABSTRACT

We describe the rational use of the neglected isocyano moiety as pharmacophoric group for the design of novel 4-isocyanophenylamides as antibacterial agents. This class of novel compounds showed to be highly effective against methicillin resistant Staphylococcus aureus strains. In particular, from an extensive screening, we identified compound 42 as lead compound. It has shown a potent antimicrobial activity, an additive effect with most antibiotics currently in use, the ability not to induce the formation of resistant strains after ten passages, and the ability to block the biofilm formation. A nontoxic profile on mammalian cells and a proper metabolic stability on human liver microsome complete the picture of this new weapon against methicillin resistant Staphylococcus aureus infections.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Humans , Anti-Bacterial Agents/pharmacology , Methicillin Resistance , Cyanides/pharmacology , Microbial Sensitivity Tests , Biofilms , Mammals
5.
ACS Med Chem Lett ; 13(12): 1898-1904, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36518692

ABSTRACT

With their three points of diversity, α-acyloxy carboxamides, which are accessible with the Passerini reaction, provide heterogeneity for the preparation of libraries of putative active agents or intermediates used for the formation of more complex structures. If on the one hand the presence of a hydrolyzable ester function has been exploited to design both prodrugs and soft drugs, on the other hand medicinal chemists are reluctant to use this skeleton to prepare hard drugs. Herein we investigated whether the stability of the ester could be controlled, leading to the formation of hydrolytically stable α-acyloxy carboxamides. When the group directly attached to the ester moiety (R3) is an ortho-substituted or ortho,ortho'-disubstituted aromatic ring, α-acyloxy carboxamides are stable. In human liver but not in rodents, due to the different expression of esterases, the ester function is also stable toward hydrolysis when the R1 group is a bulky substituent regardless of the nature of the R3 substituent.

6.
J Funct Biomater ; 13(3)2022 08 29.
Article in English | MEDLINE | ID: mdl-36135570

ABSTRACT

A deeply interconnected flexible transducer of polydimethylsiloxane (PDMS) and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) was obtained as a material for the application of soft robotics. Firstly, transducers were developed by crosslinking PEDOT:PSS with 3-glycidyloxypropryl-trimethoxysilane (GPTMS) (1, 2 and 3% v/v) and using freeze-drying to obtain porous sponges. The PEDOT:PSS sponges were morphologically characterized, showing porosities mainly between 200 and 600 µm2; such surface area dimensions tend to decrease with increasing degrees of crosslinking. A stability test confirmed a good endurance for up to 28 days for the higher concentrations of the crosslinker tested. Consecutively, the sponges were electromechanically characterized, showing a repeatable and linear resistance variation by the pressure triggers within the limits of their working range (∆RR0 max = 80% for 1-2% v/v of GPTMS). The sponges containing 1% v/v of GPTMS were intertwined with a silicon elastomer to increase their elasticity and water stability. The flexible transducer obtained with this method exhibited moderately lower sensibility and repeatability than the PEDOT:PSS sponges, but the piezoresistive response remained stable under mechanical compression. Furthermore, the transducer displayed a linear behavior when stressed within the limits of its working range. Therefore, it is still valid for pressure sensing and contact detection applications. Lastly, the flexible transducer was submitted to preliminary biological tests that indicate a potential for safe, in vivo sensing applications.

7.
Pharmaceutics ; 14(2)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35214179

ABSTRACT

Mesenchymal stem cells (MSCs) are a promising therapy in wound healing, although extensive time and manipulation are necessary for their use. In our previous study on cartilage regeneration, we demonstrated that lipoaspirate acts as a natural scaffold for MSCs and gives rise to their spontaneous outgrowth, together with a paracrine effect on resident cells that overcome the limitations connected to MSC use. In this study, we aimed to investigate in vitro whether the microfragmented adipose tissue (lipoaspirate), obtained with Lipogems® technology, could promote and accelerate wound healing. We showed the ability of resident cells to outgrow from the clusters of lipoaspirate encapsulated in a 3D collagen substrate as capability of repopulating a culture of human skin. Moreover, we demonstrated that the in vitro lipoaspirate paracrine effect on fibroblasts and keratinocytes proliferation, migration, and contraction rate is mediated by the release of trophic/reparative proteins. Finally, an analysis of the paracrine antibacterial effect of lipoaspirate proved its ability to secrete antibacterial factors and its ability to modulate their secretion in culture media based on a bacterial stimulus. The results suggest that lipoaspirate may be a promising approach in wound healing showing in vitro regenerative and antibacterial activities that could improve current therapeutic strategies.

8.
Pharmaceutics ; 13(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34452132

ABSTRACT

A major challenge in the biomedical field is the creation of materials and coating strategies that effectively limit the onset of biofilm-associated infections on medical devices. Biosurfactants are well known and appreciated for their antimicrobial/anti-adhesive/anti-biofilm properties, low toxicity, and biocompatibility. In this study, the rhamnolipid produced by Pseudomonas aeruginosa 89 (R89BS) was characterized by HPLC-MS/MS and its ability to modify cell surface hydrophobicity and membrane permeability as well as its antimicrobial, anti-adhesive, and anti-biofilm activity against Staphylococcus aureus were compared to two commonly used surfactants of synthetic origin: Tween® 80 and TritonTM X-100. The R89BS crude extract showed a grade of purity of 91.4% and was composed by 70.6% of mono-rhamnolipids and 20.8% of di-rhamnolipids. The biological activities of R89BS towards S. aureus were higher than those of the two synthetic surfactants. In particular, the anti-adhesive and anti-biofilm properties of R89BS and of its purified mono- and di-congeners were similar. R89BS inhibition of S. aureus adhesion and biofilm formation was ~97% and 85%, respectively, and resulted in an increased inhibition of about 33% after 6 h and of about 39% after 72 h when compared to their chemical counterparts. These results suggest a possible applicability of R89BS as a protective coating agent to limit implant colonization.

9.
Polymers (Basel) ; 13(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34372023

ABSTRACT

This study aimed to grow a fungal-bacterial mixed biofilm on medical-grade titanium and assess the ability of the biosurfactant R89 (R89BS) coating to inhibit biofilm formation. Coated titanium discs (TDs) were obtained by physical absorption of R89BS. Candida albicans-Staphylococcus aureus biofilm on TDs was grown in Yeast Nitrogen Base, supplemented with dextrose and fetal bovine serum, renewing growth medium every 24 h and incubating at 37 °C under agitation. The anti-biofilm activity was evaluated by quantifying total biomass, microbial metabolic activity and microbial viability at 24, 48, and 72 h on coated and uncoated TDs. Scanning electron microscopy was used to evaluate biofilm architecture. R89BS cytotoxicity on human primary osteoblasts was assayed on solutions at concentrations from 0 to 200 µg/mL and using eluates from coated TDs. Mixed biofilm was significantly inhibited by R89BS coating, with similar effects on biofilm biomass, cell metabolic activity and cell viability. A biofilm inhibition >90% was observed at 24 h. A lower but significant inhibition was still present at 48 h of incubation. Viability tests on primary osteoblasts showed no cytotoxicity of coated TDs. R89BS coating was effective in reducing C. albicans-S. aureus mixed biofilm on titanium surfaces and is a promising strategy to prevent dental implants microbial colonization.

10.
Pharmaceutics ; 13(4)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808361

ABSTRACT

The spread of antimicrobial-resistant pathogens typically existing in biofilm formation and the recent COVID-19 pandemic, although unrelated phenomena, have demonstrated the urgent need for methods to combat such increasing threats. New avenues of research for natural molecules with desirable properties to alleviate this situation have, therefore, been expanding. Biosurfactants comprise a group of unique and varied amphiphilic molecules of microbial origin capable of interacting with lipidic membranes/components of microorganisms and altering their physicochemical properties. These features have encouraged closer investigations of these microbial metabolites as new pharmaceutics with potential applications in clinical, hygiene and therapeutic fields. Mounting evidence has indicated that biosurfactants have antimicrobial, antibiofilm, antiviral, immunomodulatory and antiproliferative activities that are exploitable in new anticancer treatments and wound healing applications. Some biosurfactants have already been approved for use in clinical, food and environmental fields, while others are currently under investigation and development as antimicrobials or adjuvants to antibiotics for microbial suppression and biofilm eradication strategies. Moreover, due to the COVID-19 pandemic, biosurfactants are now being explored as an alternative to current products or procedures for effective cleaning and handwash formulations, antiviral plastic and fabric surface coating agents for shields and masks. In addition, biosurfactants have shown promise as drug delivery systems and in the medicinal relief of symptoms associated with SARS-CoV-2 acute respiratory distress syndrome.

11.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33803976

ABSTRACT

Sericin is a protein extracted from Bombyx mori silk cocoons. Over the last decade, this wastewater product of the textile industry has shown many interesting biological properties. This protein is widely used in the cosmetic and biomedical fields. In this study, sericin has been obtained via a High-Temperature High-Pressure degumming process, and was dried using the freeze-drying (fd) and spray-drying (sd) techniques. Proteins tend to collapse during drying, hence, sericin has been dried in the presence of two selected carrier agents: methyl-ß-cyclodextrin and trehalose. The obtained powders have been analyzed using thermal investigation, microscopy (optical, SEM), and granulometric and spectroscopic analyses. Moreover, the percentage yield of the spray-drying process has been calculated. Both the agents were able to significantly improve the drying process, without altering the physico-chemical properties of the protein. In particular, the co-spray-drying of sericin with methyl-ß-cyclodextrin and trehalose gave good process yields and furnished a powder with low moisture content and handling properties that are better than those of the other studied dried products. These characteristics seem to be appropriate and fruitful for the manufacturing of cosmetic raw materials.

12.
Biomed Mater ; 16(3)2021 04 16.
Article in English | MEDLINE | ID: mdl-33770778

ABSTRACT

Guided tissue regeneration procedures to treat periodontitis lesions making use of polytetrafluoroethylene (PTFE) membranes exhibit large variability in their surgical outcomes, due to bacterial infection following implantation. This work reports on a facile method to obtain antimicrobial coatings for such PTFE membranes, by exploiting a mussel-inspired approach andin-situformation of silver nanoparticles (AgNPs). PTFE films were initially coated with self-polymerized 3,4-dihydroxy-DL-phenylalanine (DOPA) (PTFE-DOPA), then incubated with AgNO3solution. In the presence of catechol moieties, Ag+ions reduced into Ag0, forming AgNPs of around 68 nm in the polyDOPA coating on PTFE membranes (PTFE-DOPA-Ag). The x-ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy analyses indicated that the AgNPs were distributed quite homogeneously in the polymeric membrane. The antimicrobial ability of PTFE-DOPA-Ag membranes againstStaphylococcus aureusandEscherichia coliwas assessed.In vitrocell assay using NIH 3T3 fibroblasts showed that, although cells were adhered to PTFE-DOPA-Ag membranes, their viability and proliferation were limited demonstrating again the antibacterial activities of PTFE-DOPA-Ag membranes. This work provides proof-of-concept study of a new versatile approach for AgNPs coating, which may be easily applied to many other types of polymeric or metallic implants through exploiting the adhesive behavior of mussel-inspired coatings.


Subject(s)
Anti-Infective Agents/pharmacology , Bivalvia/physiology , Guided Tissue Regeneration, Periodontal/instrumentation , Polytetrafluoroethylene/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Anti-Bacterial Agents/chemistry , Cell Adhesion , Cell Proliferation , Cell Survival , Coated Materials, Biocompatible/chemistry , Escherichia coli/metabolism , Fibroblasts/metabolism , Guided Tissue Regeneration, Periodontal/methods , Ions , Metal Nanoparticles/chemistry , Mice , NIH 3T3 Cells , Photoelectron Spectroscopy , Polymers/chemistry , Silver/chemistry , Staphylococcus aureus/metabolism , Surface Properties
13.
BMC Oral Health ; 21(1): 49, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33541349

ABSTRACT

BACKGROUND: Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. METHODS: R89BS was physically adsorbed on titanium discs (TDs). Cytotoxicity of coated TDs was evaluated on normal lung fibroblasts (MRC5) using a lactate dehydrogenase assay. The ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile bacteria was also performed by scanning electron microscopy. RESULTS: R89BS-coated discs showed no cytotoxic effects. TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 99%, 47% and 7% and of S. epidermidis by 54%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 78% for S. epidermidis at 24 h. CONCLUSIONS: R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.


Subject(s)
Dental Implants , Titanium , Biofilms , Coated Materials, Biocompatible , Glycolipids , Staphylococcus aureus , Surface Properties
14.
Curr Microbiol ; 77(8): 1373-1380, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32123984

ABSTRACT

Antimicrobial resistance (AMR) is a current major health issue, both for the high rates of resistance observed in bacteria that cause common infections and for the complexity of the consequences of AMR. Pathogens like Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Mycobacterium tuberculosis among others are clear examples of antibiotic-resistant threats. Biosurfactants have recently emerged as a potential new generation of anti-adhesive and anti-biofilm agents; mannosylerythritol lipids (MELs) are biosurfactants produced by a range of fungi. A range of structural variants of MELs can be formed and the proportion of each isomer in the fermentation depends on the yeast used, the carbon substrate used for growth and the duration of the fermentation. In order to allow assessment of the possible functions of MELs as antimicrobial molecules, small quantities of MEL were produced by controlled fermentation. Fermentations of the yeast Pseudozyma aphidis using rapeseed oil as a carbon source yielded up to 165 gMELs/kgSubstrate. The MELs formed by this strain was a mixture of MEL-A, MEL-B, MEL-C and MEL-D. The MELs produced were tested against S. aureus ATCC 6538 on pre-formed biofilm and on co-incubation biofilm experiments on silicone discs; showing a disruption of biomass, reduction of the biofilm metabolic activity and a bacteriostatic/bactericidal effect confirmed by a release of oxygen uptake [Formula: see text], the reduction of citrate synthase activity and scanning electron microscopy. The results show that MELs are promising antimicrobial molecules for biomedical technological applications that could be studied in detail in large-scale systems and in conjunction with animal tissue models.


Subject(s)
Anti-Infective Agents/pharmacology , Basidiomycota/chemistry , Fermentation , Glycolipids/pharmacology , Staphylococcus aureus/drug effects , Biofilms/drug effects , Biomass , Culture Media/chemistry , Glycolipids/biosynthesis , Rapeseed Oil/chemistry , Surface-Active Agents/isolation & purification , Surface-Active Agents/pharmacology
15.
Front Microbiol ; 11: 545654, 2020.
Article in English | MEDLINE | ID: mdl-33519721

ABSTRACT

Microbial biofilms strongly resist host immune responses and antimicrobial treatments and are frequently responsible for chronic infections in peri-implant tissues. Biosurfactants (BSs) have recently gained prominence as a new generation of anti-adhesive and antimicrobial agents with great biocompatibility and were recently suggested for coating implantable materials in order to improve their anti-biofilm properties. In this study, the anti-biofilm activity of lipopeptide AC7BS, rhamnolipid R89BS, and sophorolipid SL18 was evaluated against clinically relevant fungal/bacterial dual-species biofilms (Candida albicans, Staphylococcus aureus, Staphylococcus epidermidis) through quantitative and qualitative in vitro tests. C. albicans-S. aureus and C. albicans-S. epidermidis cultures were able to produce a dense biofilm on the surface of the polystyrene plates and on medical-grade silicone discs. All tested BSs demonstrated an effective inhibitory activity against dual-species biofilms formation in terms of total biomass, cell metabolic activity, microstructural architecture, and cell viability, up to 72 h on both these surfaces. In co-incubation conditions, in which BSs were tested in soluble form, rhamnolipid R89BS (0.05 mg/ml) was the most effective among the tested BSs against the formation of both dual-species biofilms, reducing on average 94 and 95% of biofilm biomass and metabolic activity at 72 h of incubation, respectively. Similarly, rhamnolipid R89BS silicone surface coating proved to be the most effective in inhibiting the formation of both dual-species biofilms, with average reductions of 93 and 90%, respectively. Scanning electron microscopy observations showed areas of treated surfaces that were free of microbial cells or in which thinner and less structured biofilms were present, compared to controls. The obtained results endorse the idea that coating of implant surfaces with BSs may be a promising strategy for the prevention of C. albicans-Staphylococcus spp. colonization on medical devices, and can potentially contribute to the reduction of the high economic efforts undertaken by healthcare systems for the treatment of these complex fungal-bacterial infections.

16.
Article in English | MEDLINE | ID: mdl-31867312

ABSTRACT

The use of antibiotics has been the cornerstone to prevent bacterial infections; however, the emergency of antibiotic-resistant bacteria is still an open challenge. This work aimed to develop a delivery system for treating soft tissue infections for: (1) reducing the released antimicrobial amount, preventing drug-related systemic side effects; (2) rediscovering the beneficial effects of naturally derived agents; and (3) preserving the substrate functional properties. For the first time, Manuka honey (MH) was proposed as polyelectrolyte within the layer-by-layer assembly. Biomimetic electrospun poly(ε-caprolactone) meshes were treated via layer-by-layer assembly to obtain a multilayered nanocoating, consisting of MH as polyanion and poly-(allylamine-hydrochloride) as polycation. Physicochemical characterization demonstrated the successful nanocoating formation. Different cell lines (human immortalized and primary skin fibroblasts, and primary endothelial cells) confirmed positively the membranes cytocompatibility, while bacterial tests using Gram-negative and Gram-positive bacteria demonstrated that the antimicrobial MH activity was dependent on the concentration used and strains tested.

17.
Molecules ; 24(21)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731408

ABSTRACT

Staphylococcus aureus and Staphylococcus epidermidis are considered two of the most important pathogens, and their biofilms frequently cause device-associated infections. Microbial biosurfactants recently emerged as a new generation of anti-adhesive and anti-biofilm agents for coating implantable devices to preserve biocompatibility. In this study, R89 biosurfactant (R89BS) was evaluated as an anti-biofilm coating on medical-grade silicone. R89BS is composed of homologues of the mono- (75%) and di-rhamnolipid (25%) families, as evidenced by mass spectrometry analysis. The antimicrobial activity against Staphylococcus spp. planktonic and sessile cells was evaluated by microdilution and metabolic activity assays. R89BS inhibited S. aureus and S. epidermidis growth with minimal inhibitory concentrations (MIC99) of 0.06 and 0.12 mg/mL, respectively and dispersed their pre-formed biofilms up to 93%. Silicone elastomeric discs (SEDs) coated by R89BS simple adsorption significantly counteracted Staphylococcus spp. biofilm formation, in terms of both built-up biomass (up to 60% inhibition at 72 h) and cell metabolic activity (up to 68% inhibition at 72 h). SEM analysis revealed significant inhibition of the amount of biofilm-covered surface. No cytotoxic effect on eukaryotic cells was detected at concentrations up to 0.2 mg/mL. R89BS-coated SEDs satisfy biocompatibility requirements for leaching products. Results indicate that rhamnolipid coatings are effective anti-biofilm treatments and represent a promising strategy for the prevention of infection associated with implantable devices.


Subject(s)
Biofilms/drug effects , Prosthesis-Related Infections/drug therapy , Staphylococcal Infections/drug therapy , Surface-Active Agents/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Microbial Sensitivity Tests , Prostheses and Implants/adverse effects , Prostheses and Implants/microbiology , Prosthesis-Related Infections/microbiology , Silicone Elastomers/chemistry , Silicone Elastomers/pharmacology , Silicones/chemistry , Silicones/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Staphylococcus epidermidis/pathogenicity , Surface-Active Agents/chemistry
18.
Materials (Basel) ; 12(12)2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31208032

ABSTRACT

During wound healing, bacterial infections may prolong skin regeneration and tissue repair, causing delayed or incomplete healing. The therapeutic strategies currently used include general therapeutic modes, growth factors, skin substitutes, matrices and/or cell therapy. Among recent technologies, wound dressing materials comprising silver nitrate or silver sulfadiazine as the antimicrobial agent are widespread, despite their known cytotoxicity. The aim of this work was to develop and evaluate the efficacy of gelatinous injectable biomaterials composed of collagen and alginates, enriched with silver against bacterial pathogens commonly involved in wound infections. To reduce cytotoxicity, silver was used as lactate and saccharinated salts. Results show that silver-enriched beads were effective against both Gram-positive and Gram-negative strains in a concentration-dependent manner. Silver addition was more active against Staphylococcus epidermidis than against Pseudomonas aeruginosa. The antibacterial activity was localized only in the area of contact with the beads at concentrations lower than 0.3 mM, whereas at higher concentrations a larger inhibition halo was observed. No cytotoxic effect on eukaryotic cells was seen both testing the materials' extracts or the Ag-doped beads in contact tests. These results, although preliminary, suggest that these scaffolds are a promising approach for realizing injectable or spreadable functional biomaterials with antibacterial activity for applications in wound management.

19.
Colloids Surf B Biointerfaces ; 172: 233-243, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30172204

ABSTRACT

HYPOTHESIS: Wound healing is a complex process that often requires treatment with antibacterial agents to avoid infection, which affects the optimal tissue regeneration process. Ideal scaffolds for wound healing treatment should combine biomimetic features to ensure the tissue growth on properly designed extracellular matrix (ECM)-like scaffolds and antibacterial properties in order to avoid bacterial colonization. EXPERIMENTS: In this work, gelatin cross-linked nanofibers (GL-nanofibres), with diameters ranging from 200 to 300 nm, were prepared via a "green electrospinning technique" to mimic the structure and composition of the extracellular matrix (ECM), and promote the normal skin wound healing process. Nanofibres were doped with two antibacterial agents (gentamicin sulphate or silver nanoparticles) to achieve an antibacterial effect against Gram + and Gram- bacteria. FINDINGS: The ECM-mimicking structure of GL-nanofibres was not affected by the presence of the antibacterial agents, which were homogeneously distributed within the mats as shown by SEM and EDS. The antibacterial properties of the developed matrices were confirmed using 4 strains (S. aureus, S. epidermidis, P. aeruginosa and E. coli) while the biocompatibility of the developed substrates and their ability to induce cell growth was assessed using Neonatal Normal Human Dermal Fibroblasts (NHDF-Neo).


Subject(s)
Anti-Bacterial Agents/pharmacology , Biomimetic Materials/chemistry , Nanostructures/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Wound Healing/drug effects , Animals , Bacteria/drug effects , Cells, Cultured , Cross-Linking Reagents/chemistry , Drug Liberation , Elastic Modulus , Gentamicins/pharmacology , Humans , Microbial Sensitivity Tests , Nanofibers/chemistry , Nanofibers/ultrastructure , Nanostructures/ultrastructure , Spectroscopy, Fourier Transform Infrared , Sus scrofa , Water/chemistry
20.
Antonie Van Leeuwenhoek ; 109(10): 1375-88, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27444239

ABSTRACT

Candida albicans is the major fungus that colonises medical implants, causing device-associated infections with high mortality. Antagonistic bacterial products with interesting biological properties, such as biosurfactants, have recently been considered for biofilm prevention. This study investigated the activity of lipopeptide biosurfactant produced by Bacillus subtilis AC7 (AC7 BS) against adhesion and biofilm formation of C. albicans on medical-grade silicone elastomeric disks (SEDs). Chemical analysis, stability, surface activities of AC7 BS crude extract and physicochemical characterisation of the coated silicone disk surfaces were also carried out. AC7 BS showed a good reduction of water surface tension, low critical micelle concentration, good emulsification activity, thermal resistance and pH stability. Co-incubation with 2 mg ml(-1) AC7 BS significantly reduced adhesion and biofilm formation of three C. albicans strains on SEDs in a range of 67-69 % and of 56-57 %, respectively. On pre-coated SEDs, fungal adhesion and biofilm formation were reduced by 57-62 % and 46-47 %, respectively. Additionally, AC7 BS did not inhibit viability of C. albicans strains in both planktonic and sessile form. Chemical analysis of the crude extract revealed the presence of two families of lipopeptides, principally surfactin and a lower percentage of fengycin. The evaluation of surface wettability indicated that AC7 BS coating of SEDs surface was successful although uneven. AC7 BS significantly prohibits the initial deposition of C. albicans and slows biofilm growth, suggesting a potential role of biosurfactant coatings for preventing fungal infection associated with silicone medical devices.


Subject(s)
Antifungal Agents/pharmacology , Bacillus subtilis/chemistry , Biofilms/drug effects , Candida albicans/drug effects , Lipopeptides/pharmacology , Silicones , Candida albicans/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...