Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Immunol ; 15: 1369238, 2024.
Article in English | MEDLINE | ID: mdl-38585273

ABSTRACT

Introduction: Exosome-enriched small extracellular vesicles (sEVs) are nanosized organelles known to participate in long distance communication between cells, including in the skin. Atopic dermatitis (AD) is a chronic inflammatory skin disease for which filaggrin (FLG) gene mutations are the strongest genetic risk factor. Filaggrin insufficiency affects multiple cellular function, but it is unclear if sEV-mediated cellular communication originating from the affected keratinocytes is also altered, and if this influences peptide and lipid antigen presentation to T cells in the skin. Methods: Available mRNA and protein expression datasets from filaggrin-insufficient keratinocytes (shFLG), organotypic models and AD skin were used for gene ontology analysis with FunRich tool. sEVs secreted by shFLG and control shC cells were isolated from conditioned media by differential centrifugation. Mass spectrometry was carried out for lipidomic and proteomic profiling of the cells and sEVs. T cell responses to protein, peptide, CD1a lipid antigens, as well as phospholipase A2-digested or intact sEVs were measured by ELISpot and ELISA. Results: Data analysis revealed extensive remodeling of the sEV compartment in filaggrin insufficient keratinocytes, 3D models and the AD skin. Lipidomic profiles of shFLGsEV showed a reduction in the long chain (LCFAs) and polyunsaturated fatty acids (PUFAs; permissive CD1a ligands) and increased content of the bulky headgroup sphingolipids (non-permissive ligands). This resulted in a reduction of CD1a-mediated interferon-γ T cell responses to the lipids liberated from shFLG-generated sEVs in comparison to those induced by sEVs from control cells, and an increase in interleukin 13 secretion. The altered sEV lipidome reflected a generalized alteration in the cellular lipidome in filaggrin-insufficient cells and the skin of AD patients, resulting from a downregulation of key enzymes implicated in fatty acid elongation and desaturation, i.e., enzymes of the ACSL, ELOVL and FADS family. Discussion: We determined that sEVs constitute a source of antigens suitable for CD1a-mediated presentation to T cells. Lipids enclosed within the sEVs secreted on the background of filaggrin insufficiency contribute to allergic inflammation by reducing type 1 responses and inducing a type 2 bias from CD1a-restricted T cells, thus likely perpetuating allergic inflammation in the skin.


Subject(s)
Dermatitis, Atopic , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Filaggrin Proteins , Inflammation , Intermediate Filament Proteins/genetics , Keratinocytes , Lipids , Peptides/metabolism , Proteomics , T-Lymphocytes/metabolism
3.
Sci Rep ; 13(1): 3431, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859494

ABSTRACT

Members of a novel class of anticancer compounds, exhibiting high antitumor activity, i.e. the unsymmetrical bisacridines (UAs), consist of two heteroaromatic ring systems. One of the ring systems is an imidazoacridinone moiety, with the skeleton identical to the structural base of Symadex. The second one is a 1-nitroacridine moiety, hence it may be regarded as Nitracrine's structural basis. These monoacridine units are connected by an aminoalkyl linker, which vary in structure. In theory, these unsymmetrical dimers should act as double-stranded DNA (dsDNA) bis-intercalators, since the monomeric units constituting the UAs were previously reported to exhibit an intercalating mode of binding into dsDNA. On the contrary, our earlier, preliminary studies have suggested that specific and/or structurally well-defined binding of UAs into DNA duplexes might not be the case. In this contribution, we have revisited and carefully examined the dsDNA-binding properties of monoacridines C-1305, C-1311 (Symadex), C-283 (Ledakrin/Nitracrine) and C-1748, as well as bisacridines C-2028, C-2041, C-2045 and C-2053 using advanced NMR techniques, aided by molecular modelling calculations and the analysis of UV-VIS spectra, decomposed by chemometric techniques. These studies allowed us to explain, why the properties of UAs are not a simple sum of the features exhibited by the acridine monomers.


Subject(s)
Acridines , Nitracrine , Magnetic Resonance Imaging , Chemometrics , DNA , Intercalating Agents
4.
Microorganisms ; 11(2)2023 02 16.
Article in English | MEDLINE | ID: mdl-36838453

ABSTRACT

So far, Bacillus species bacteria are being used as bacteria concentrates, supplementing cleaning preparations in order to reduce odor and expel pathogenic bacteria. Here, we discuss the potential of Bacillus species as 'natural' probiotics and evaluate their microbiological characteristics. An industrially used microbiological concentrates and their components of mixed Bacillus species cultures were tested, which may be a promising bacteria source for food probiotic preparation for supplementary diet. In this study, antagonistic activities and probiotic potential of Bacillus species, derived from an industrial microbiological concentrate, were demonstrated. The cell free supernatants (CFS) from Bacillus licheniformis mostly inhibited the growth of foodborne pathogenic bacteria, such as Escherichia coli O157:H7 ATCC 35150, Salmonella Enteritidis KCCM 12021, and Staphylococcus aureus KCCM 11335, while some of Bacillus strains showed synergistic effect with foodborne pathogenic bacteria. Moreover, Bacillus strains identified by the MALDI TOF-MS method were found sensitive to chloramphenicol, kanamycin, and rifampicin. B. licheniformis and B. cereus displayed the least sensitivity to the other tested antibiotics, such as ampicillin, ampicillin and sulfbactam, streptomycin, and oxacillin and bacitracin. Furthermore, some of the bacterial species detected extended their growth range from the mesophilic to moderately thermophilic range, up to 54 °C. Thus, their potential sensitivity to thermophilic TP-84 bacteriophage, infecting thermophilic Bacilli, was tested for the purpose of isolation a new bacterial host for engineered bionanoparticles construction. We reason that the natural environmental microflora of non-pathogenic Bacillus species, especially B. licheniformis, can become a present probiotic remedy for many contemporary issues related to gastrointestinal tract health, especially for individuals under metabolic strain or for the increasingly growing group of lactose-intolerant people.

5.
Front Immunol ; 13: 884530, 2022.
Article in English | MEDLINE | ID: mdl-35784319

ABSTRACT

Candida albicans (C. albicans) infection is a potential complication in the individuals with atopic dermatitis (AD) and can affect clinical course of the disease. Here, using primary keratinocytes we determined that atopic milieu promotes changes in the interaction of small extracellular vesicles (sEVs) with dendritic cells and that this is further enhanced by the presence of C. albicans. sEV uptake is largely dependent on the expression of glycans on their surface; modelling of the protein interactions indicated that recognition of this pathogen through C. albicans-relevant pattern recognition receptors (PRRs) is linked to several glycosylation enzymes which may in turn affect the expression of sEV glycans. Here, significant changes in the surface glycosylation pattern, as determined by lectin array, could be observed in sEVs upon a combined exposure of keratinocytes to AD cytokines and C. albicans. This included enhanced expression of multiple types of glycans, for which several dendritic cell receptors could be proposed as binding partners. Blocking experiments showed predominant involvement of the inhibitory Siglec-7 and -9 receptors in the sEV-cell interaction and the engagement of sialic acid-containing carbohydrate moieties on the surface of sEVs. This pointed on ST6 ß-Galactoside α-2,6-Sialyltransferase 1 (ST6GAL1) and Core 1 ß,3-Galactosyltransferase 1 (C1GALT1) as potential enzymes involved in the process of remodelling of the sEV surface glycans upon C. albicans exposure. Our results suggest that, in combination with atopic dermatitis milieu, C. albicans promotes alterations in the glycosylation pattern of keratinocyte-derived sEVs to interact with inhibitory Siglecs on antigen presenting cells. Hence, a strategy aiming at this pathway to enhance antifungal responses and restrict pathogen spread could offer novel therapeutic options for skin candidiasis in AD.


Subject(s)
Candidiasis , Dermatitis, Atopic , Extracellular Vesicles , Candida albicans , Glycosylation , Humans , Keratinocytes , Sialic Acid Binding Immunoglobulin-like Lectins
6.
Molecules ; 27(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807234

ABSTRACT

Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents previously synthesized by our group. Our recent studies have demonstrated their high antitumor potential against multiple cancer cell lines and human tumor xenografts in nude mice. At the cellular level, these compounds affected 3D cancer spheroid growth and their cellular uptake was selectively modulated by quantum dots. UAs were shown to undergo metabolic transformations in vitro and in tumor cells. However, the physicochemical properties of UAs, which could possibly affect their interactions with molecular targets, remain unknown. Therefore, we selected four highly active UAs for the assessment of physicochemical parameters under various pH conditions. We determined the compounds' pKa dissociation constants as well as their potential to self-associate. Both parameters were determined by detailed and complex chemometric analysis of UV-Vis spectra supported by nuclear magnetic resonance (NMR) spectroscopy. The obtained results indicate that general molecular properties of UAs in aqueous media, including their protonation state, self-association ratio, and solubility, are strongly pH-dependent, particularly in the physiological pH range of 6 to 8. In conclusion, we describe the detailed physicochemical characteristics of UAs, which might contribute to their selectivity towards tumour cells as opposed to their effect on normal cells.


Subject(s)
Acid-Base Equilibrium , Antineoplastic Agents , Animals , Antineoplastic Agents/pharmacology , Chemometrics , Humans , Hydrogen-Ion Concentration , Mice , Mice, Nude
7.
Microorganisms ; 9(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34361957

ABSTRACT

Bacteriophages of thermophiles are of increasing interest owing to their important roles in many biogeochemical, ecological processes and in biotechnology applications, including emerging bionanotechnology. However, due to lack of in-depth investigation, they are underrepresented in the known prokaryotic virosphere. Therefore, there is a considerable potential for the discovery of novel bacteriophage-host systems in various environments: marine and terrestrial hot springs, compost piles, soil, industrial hot waters, among others. This review aims at providing a reference compendium of thermophages characterized thus far, which infect the species of thermophilic 'Bacillus group' bacteria, mostly from Geobacillus sp. We have listed 56 thermophages, out of which the majority belong to the Siphoviridae family, others belong to the Myoviridae and Podoviridae families and, apparently, a few belong to the Sphaerolipoviridae, Tectiviridae or Corticoviridae families. All of their genomes are composed of dsDNA, either linear, circular or circularly permuted. Fourteen genomes have been sequenced; their sizes vary greatly from 35,055 bp to an exceptionally large genome of 160,590 bp. We have also included our unpublished data on TP-84, which infects Geobacillus stearothermophilus (G. stearothermophilus). Since the TP-84 genome sequence shows essentially no similarity to any previously characterized bacteriophage, we have defined TP-84 as a new species in the newly proposed genus Tp84virus within the Siphoviridae family. The information summary presented here may be helpful in comparative deciphering of the molecular basis of the thermophages' biology, biotechnology and in analyzing the environmental aspects of the thermophages' effect on the thermophile community.

8.
Acta Biochim Pol ; 68(3): 393-398, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34432408

ABSTRACT

The time of COVID-19 pandemic focused the attention of scientist to recognise the complex medical symptoms of the disease, modes of infection and possible therapies. The organisms' response towards SARS-CoV-2 infection depends on many individual factors and the course of disease is described as unprecedented and complex. Numerous symptoms from the respiratory system, abnormalities in the gastrointestinal tract, stroke, liver damage and coagulopathy, among others, are accompanied by negative side effects of the pandemic lifestyle, including immunity depletion, overall fitness impairment, skin condition worsening, psychological and psychiatric consequences. There is an urgent need to seek all possible routes for assuring favouring conditions to build and support the organisms' microbiological barriers and enhance immunity, which will also help during the ongoing vaccination action. Probiotic Lactic Acid Bacteria (LAB) and environmental Bacillus species are microorganisms typically found in food products or dietary supplements, but also applied on body surfaces or technological surfaces at home and in the industry. Since the contemporary definition of probiotics points to positive health effects, it is of highest importance to follow strict regulations and standards of product manufacturing, especially in the times of biohazard risks and rising public distrust of therapies. There is an urgent need to seek all possible routes for assuring the favouring conditions to build and support the organisms' microbiological barriers and enhance the immunity, that will serve also during the ongoing vaccination action. Probiotic LAB and environmental Bacillus species are microorganisms typically found in food products or dietary supplements, but also applied on body surface or technological surfaces in household and industry. Since the contemporary definition of probiotics points out the positive health effects, it is of highest importance to follow strict regulations and standards of product manufacturing, especially in the times of biohazard and rising public distrust of therapies.


Subject(s)
COVID-19/immunology , Probiotics/therapeutic use , COVID-19/microbiology , COVID-19/virology , Dietary Supplements , Gastrointestinal Tract/microbiology , Humans , SARS-CoV-2/isolation & purification
9.
Int J Mol Sci ; 22(9)2021 May 03.
Article in English | MEDLINE | ID: mdl-34063704

ABSTRACT

Carnivorous plants are exemplary natural sources of secondary metabolites with biological activity. However, the therapeutic antimicrobial potential of these compounds is limited due to intrinsic resistance of selected bacterial pathogens, among which Pseudomonas aeruginosa represents an extreme example. The objective of the study was to overcome the intrinsic resistance of P. aeruginosa by combining silver nanoparticles (AgNPs) with secondary metabolites from selected carnivorous plant species. We employed the broth microdilution method, the checkerboard titration technique and comprehensive phytochemical analyses to define interactions between nanoparticles and active compounds from carnivorous plants. It has been confirmed that P. aeruginosa is resistant to a broad range of secondary metabolites from carnivorous plants, i.e., naphthoquinones, flavonoids, phenolic acids (MBC = 512 µg mL-1) and only weakly sensitive to their mixtures, i.e., extracts and extracts' fractions. However, it was shown that the antimicrobial activity of extracts and fractions with a significant level of naphthoquinone (plumbagin) was significantly enhanced by AgNPs. Our studies clearly demonstrated a crucial role of naphthoquinones in AgNPs and extract interaction, as well as depicted the potential of AgNPs to restore the bactericidal activity of naphthoquinones towards P. aeruginosa. Our findings indicate the significant potential of nanoparticles to modulate the activity of selected secondary metabolites and revisit their antimicrobial potential towards human pathogenic bacteria.


Subject(s)
Carnivorous Plant/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests , Naphthoquinones/adverse effects , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Plant Extracts/chemistry , Pseudomonas aeruginosa/pathogenicity , Secondary Metabolism/drug effects , Silver/chemistry , Spectrophotometry, Ultraviolet
10.
MethodsX ; 7: 101070, 2020.
Article in English | MEDLINE | ID: mdl-33083239

ABSTRACT

De novo designed bioactive molecules, such as DNA, RNA and peptides, are utilized in increasingly diverse scientific, industrial and biomedical applications. Concatemerization of designed DNA, RNA and peptides may improve their stability, bioactivity and allow for gradual release of the bioactive molecule at the intended destination. In this context, we developed a new method enabling the formation of DNA concatemers for the production of artificial, repetitive genes, encoding concatemeric RNAs and proteins of any nucleotide and amino-acid sequence. The technology recruits the Type IIS SapI restriction endonuclease (REase) for assembling DNA fragments in an ordered head-to-tail-orientation. Alternatively, other commercially available SapI isoschizomers can be used: LguI and thermostable BspQI. Four series of DNA vectors dedicated to the expression of newly formed, concatemeric open reading frames (ORFs), were designed and constructed to meet the technology needs. • Vector-enzymatic DNA fragment amplification technology. • Construction of DNA concatemers many times longer than those available with the use of current de novo gene synthesis methods. • Biosynthesis of protein tandem repeats with programmable function never seen in nature.

11.
Acta Biochim Pol ; 67(2): 247-257, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32544313

ABSTRACT

B-cell Chronic Lymphocytic Leukemia (B-CLL) is the most common hematological disorder among middle-aged/elderly people in the Western countries. We have shown earlier that B-CLL cells exhibit elevated total amount and available activity of µ-calpain, belonging to a family of ubiquitous, strongly Ca-dependent proteases, involved in the control of proliferation and apoptosis. In this study we attempted to estimate a potential clinical value of µ-calpain in relation to B-CLL clinical staging in patients with extremely high lymphocytosis and studied the molecular mechanisms associating calpain activity with clinical progress of the disease. We observed significant correlations between the amounts of intracellular µ-calpain and clinical staging of the disease, with RAI stage 1 corresponding to the highest calpain amounts in the leukemic cells. There was also a positive, statistically significant correlation between the amount of µ-calpain and phosphorylated (p)ZAP-70 in B-CLL lymphocytes. Calpain activity in the B-CLL cells is associated with decreased activities of pro-apoptotic caspases -3 and -9, and reciprocally with an increased amount of anti-apoptotic Bcl-2. Together, all of these findings make calpain activity in B-CLL cells a promising target modifying the properties of these cells and facilitating therapy. Finally, the proportion of CD19+ B cells with elevated µ-calpain and pZap-70 was markedly reduced in patients after successful therapy.


Subject(s)
Apoptosis/drug effects , B-Lymphocytes/metabolism , Calpain/metabolism , Disease Progression , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Aged , Aged, 80 and over , Calpain/antagonists & inhibitors , Case-Control Studies , Caspase 3/metabolism , Caspase 9/metabolism , Cells, Cultured , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Neoplasm Staging , Oligopeptides/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , ZAP-70 Protein-Tyrosine Kinase/metabolism
12.
Data Brief ; 28: 105069, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31956674

ABSTRACT

Applications of bioactive peptides and polypeptides are emerging in areas such as drug development and drug delivery systems. These compounds are bioactive, biocompatible and represent a wide range of chemical properties, enabling further adjustments of obtained biomaterials. However, delivering large quantities of peptide derivatives is still challenging. Several methods have been developed for the production of concatemers - multiple copies of the desired protein segments. We have presented an efficient method for the production of peptides of desired length, expressed from concatemeric Open Reading Frame. The method employs specific amplification-expression DNA vectors. The main methodological approaches are described by Skowron et al., 2020 [1]. As an illustration of the demonstrated method's utility, an epitope from the S protein of Hepatitis B virus (HBV) was amplified. Additionally, peptides, showing potentially pro-regenerative properties, derived from the angiopoietin-related growth factor (AGF) were designed and amplified. Here we present a dataset including: (i) detailed protocols for the purification of HBV and AGF - derived polyepitopic protein concatemers, (ii) sequences of the designed primers, vectors and recombinant constructs, (iii) data on cytotoxicity, immunogenicity and stability of AGF-derived polypeptides.

13.
Mater Sci Eng C Mater Biol Appl ; 108: 110426, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923928

ABSTRACT

A DNA fragment amplification/expression technology for the production of new generation biomaterials for scientific, industrial and biomedical applications is described. The technology enables the formation of artificial Open Reading Frames (ORFs) encoding concatemeric RNAs and proteins. It recruits the Type IIS SapI restriction endonuclease (REase) for an assembling of DNA fragments in an ordered head-to-tail-orientation. The technology employs a vector-enzymatic system, dedicated to the expression of newly formed, concatemeric ORFs from strong promoters. Four vector series were constructed to suit specialised needs. As a proof of concept, a model amplification of a 7-amino acid (aa) epitope from the S protein of HBV virus was performed, resulting in 500 copies of the epitope-coding DNA segment, consecutively linked and expressed in Escherichia coli (E. coli). Furthermore, a peptide with potential pro-regenerative properties (derived from an angiopoietin-related growth factor) was designed. Its aa sequence was back-translated, codon usage optimized and synthesized as a continuous ORF 10-mer. The 10-mer was cloned into the amplification vector, enabling the N-terminal fusion and multiplication of the encoded protein with MalE signal sequence. The obtained genes were expressed, and the proteins were purified. Conclusively, we show that the proteins are neither cytotoxic nor immunogenic and they have a very low allergic potential.


Subject(s)
Biocompatible Materials , DNA, Concatenated , Escherichia coli , Gene Expression , Nucleic Acid Amplification Techniques , Open Reading Frames , DNA, Concatenated/genetics , DNA, Concatenated/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Hepatitis B virus/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Viral Fusion Proteins/biosynthesis , Viral Fusion Proteins/genetics
14.
Acta Biochim Pol ; 66(2): 215-222, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31207608

ABSTRACT

The role of environmentally coexisting microflora that often comprises human commensal microbiome is still underestimated. Modern lifestyle changes include hygienic practices, food preparation and eradication of many contagious diseases. In this context, probiotic microorganisms are biocontrol remedies still under development, solving a number of gastrointestinal and immunological issues, while fighting hazardous microbiological biofilms on different surfaces. Probiotics are mainly associated with Lactic Acid Bacteria, however environmental, non-dairy sources are promising ecological niches of probiotic spore-forming Bacillus species. Industrial applications of these "unconventional" probiotics take an advantage of their sporulating activity which greatly enhances their compatibility with chemical formulations used in the household, cosmetic or pharmaceutical chemistry. We have analysed 14 commercially available chemical products, labelled or described to contain a probiotic or biologically active component. It was determined that in the most part they relay on consortiums of spore-forming, very closely related Bacillus species, exhibiting bimodal existence in the environment and the gastrointestinal tract (GIT). In addition, we have found a number of non-sporulating species. Overall, the microorganisms found included: Bacillus licheniformis, Bacillus subtilis, Bacillus pumilus, Citrobacter freundii, Klebsiella oxytoca, Stenotrophomonas malthophila, Serratia liquefaciens, Bacillus altitudinis, Lactobacillus gastricus, Bacillus megaterium, Lactobacillus nagelii, Aromatoleum buckelii, Trichosporon mucoides, Clostridium novyi, Bacteroides uniformis. As some of the listed species may become opportunistic pathogens, this raises an important question concerning general safety of probiotics, as apparently the manufacturing procedures do not always lead to microbiologically defined or sufficiently controlled microorganism consortiums.


Subject(s)
Bacillus , Probiotics , Soaps/analysis , Chemical Safety , Consumer Product Safety , Gastrointestinal Microbiome , Humans , Industrial Microbiology , Mass Spectrometry
15.
Appl Microbiol Biotechnol ; 103(8): 3439-3451, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30879089

ABSTRACT

Over 470 prototype Type II restriction endonucleases (REases) are currently known. Most recognise specific DNA sequences 4-8 bp long, with very few exceptions cleaving DNA more frequently. TsoI is a thermostable Type IIC enzyme that recognises the DNA sequence TARCCA (R = A or G) and cleaves downstream at N11/N9. The enzyme exhibits extensive top-strand nicking of the supercoiled single-site DNA substrate. The second DNA strand of such substrate is specifically cleaved only in the presence of duplex oligonucleotides containing a cognate site. We have previously shown that some Type IIC/IIG/IIS enzymes from the Thermus-family exhibit 'affinity star' activity, which can be induced by the S-adenosyl-L-methionine (SAM) cofactor analogue-sinefungin (SIN). Here, we define a novel type of inherently built-in 'star' activity, exemplified by TsoI. The TsoI 'star' activity cannot be described under the definition of the classic 'star' activity as it is independent of the reaction conditions used and cannot be separated from the cognate specificity. Therefore, we define this phenomenon as Secondary-Cognate-Specificity (SCS). The TsoI SCS comprises several degenerated variants of the cognate site. Although the efficiency of TsoI SCS cleavage is lower in comparison to the cognate TsoI recognition sequence, it can be stimulated by S-adenosyl-L-cysteine (SAC). We present a new route for the chemical synthesis of SAC. The TsoI/SAC REase may serve as a novel tool for DNA manipulation.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Deoxyribonucleases, Type II Site-Specific/chemistry , Deoxyribonucleases, Type II Site-Specific/metabolism , DNA Cleavage , DNA Fragmentation , Dimethyl Sulfoxide/chemistry , Enzyme Activation , Oligonucleotides/chemistry , S-Adenosylhomocysteine/analogs & derivatives , S-Adenosylhomocysteine/chemistry , Substrate Specificity , Thermus/enzymology
16.
Acta Biochim Pol ; 65(4): 509-519, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30521647

ABSTRACT

Supplementing the human microbiome with probiotic microorganisms is a proposed solution for civilization syndromes such as dysbiosis and gastrointestinal tract (GIT) disorders. Bimodal probiotic strains of the Bacillus genus constitute the microbiota of the human environment, and are typically found in soil, water, a number of non-dairy fermented foods, as well as in human and animal GIT. Probiotic Bacillus sp. are Gram positive rods, with the ability of sporulation to survive environmental stress and preparation conditions. In vitro models of the human stomach and human studies with probiotic Bacillus reveal the mechanisms of its life cycle and sporulation. The Bacillus sp. probiotic biofilm introduces biochemical effects such as antimicrobial and enzymatic activity, thus contributing to protection from GIT and other infections. Despite the beneficial activity of Bacillus strains belonging to the safety group 1, a number of strains can pose a substantial health risk, carrying genes for various toxins or antibiotic resistance. Commercially available Bacillus probiotic preparations include strains from the subtilis and other closely related phylogenetic clades. Those intended for oral administration in humans, often encapsulated with appropriate supporting materials, still tend to be mislabeled or poorly characterized. Bacillus sp. MALDI-TOF analysis, combined with sequencing of characteristic 16S rRNA or enzyme coding genes, may provide accurate identification. A promising future application of the probiotic Bacillus sp. might be the microflora biocontrol in the human body and the closest human environment. Environmental probiotic Bacillus species display the potential to support human microflora, however controversies regarding the safety of certain strains is a key factor in their still limited application.


Subject(s)
Bacillus/physiology , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/prevention & control , Gastrointestinal Microbiome , Probiotics/administration & dosage , Probiotics/adverse effects , Bacillus/classification , Bacillus/genetics , Biofilms , Drug Resistance, Bacterial , Humans , Probiotics/standards , RNA, Ribosomal, 16S/genetics , Risk
17.
Nucleic Acids Res ; 45(15): 9005-9018, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28911108

ABSTRACT

Two restriction-modification systems have been previously discovered in Thermus aquaticus YT-1. TaqI is a 263-amino acid (aa) Type IIP restriction enzyme that recognizes and cleaves within the symmetric sequence 5'-TCGA-3'. TaqII, in contrast, is a 1105-aa Type IIC restriction-and-modification enzyme, one of a family of Thermus homologs. TaqII was originally reported to recognize two different asymmetric sequences: 5'-GACCGA-3' and 5'-CACCCA-3'. We previously cloned the taqIIRM gene, purified the recombinant protein from Escherichia coli, and showed that TaqII recognizes the 5'-GACCGA-3' sequence only. Here, we report the discovery, isolation, and characterization of TaqIII, the third R-M system from T. aquaticus YT-1. TaqIII is a 1101-aa Type IIC/IIL enzyme and recognizes the 5'-CACCCA-3' sequence previously attributed to TaqII. The cleavage site is 11/9 nucleotides downstream of the A residue. The enzyme exhibits striking biochemical similarity to TaqII. The 93% identity between their aa sequences suggests that they have a common evolutionary origin. The genes are located on two separate plasmids, and are probably paralogs or pseudoparalogs. Putative positions and aa that specify DNA recognition were identified and recognition motifs for 6 uncharacterized Thermus-family enzymes were predicted.


Subject(s)
Bacterial Proteins/genetics , Deoxyribonucleases, Type II Site-Specific/genetics , Nucleotide Motifs , Plasmids/metabolism , Thermus/enzymology , Amino Acid Sequence , Bacterial Proteins/metabolism , Cloning, Molecular , DNA Cleavage , Deoxyribonucleases, Type II Site-Specific/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Isoenzymes/genetics , Isoenzymes/metabolism , Molecular Weight , Plasmids/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Thermus/genetics
18.
Oncotarget ; 7(47): 76479-76495, 2016 Nov 22.
Article in English | MEDLINE | ID: mdl-27835610

ABSTRACT

The immune response is determined by the speed of the T cell reaction to antigens assured by a state of readiness for proliferation and cytokine secretion. Proliferation, apoptosis and motion of many cell types are controlled by cytoplasmic proteases - µ- and m-calpain - and their inhibitor calpastatin, together forming the "calpain-calpastatin system" (CCS), assumed to modify their targets only upon activation-dependent cytoplasmic Ca2+ increase. Contrastingly to this notion, using quantitative real time PCR and semiquantitative flow cytometry respectively, we show here that the CCS genes are constitutively expressed, and that both calpains are constitutively active in resting, circulating human CD4+ and CD8+ lymphocytes. Furthermore, we demonstrate that calpain inhibition in the resting T cells prevents them from proliferation in vitro and greatly reduces secretion of multiple cytokines. The mechanistic reason for these effects of calpain inhibition on T cell functions might be the demonstrated significant reduction of the expression of active (phosphorylated) upstream signalling molecules, including the phospholipase C gamma, p56Lck and NFκB, in the inhibitor-treated cells. Thus, we propose that the constitutive, self-regulatory calpain-calpastatin system activity in resting human T cells is a necessary, controlling element of their readiness for complex and effective response to antigenic challenge.


Subject(s)
Calcium-Binding Proteins/metabolism , Calpain/metabolism , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Antigens, CD/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/pharmacology , Calpain/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cytokines/metabolism , Gene Expression Profiling , Humans , Lymphocyte Activation/drug effects , Phosphorylation , Resting Phase, Cell Cycle/genetics , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/drug effects
19.
J Biosci ; 41(1): 27-38, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26949085

ABSTRACT

Screening of extreme environments in search for novel microorganisms may lead to the discovery of robust enzymes with either new substrate specificities or thermostable equivalents of those already found in mesophiles, better suited for biotechnology applications. Isolates from Iceland geysers' biofilms, exposed to a broad range of temperatures, from ambient to close to water boiling point, were analysed for the presence of DNA-interacting proteins, including restriction endonucleases (REases). GeoICI, a member of atypical Type IIS REases, is the most thermostable isoschizomer of the prototype BbvI, recognizing/cleaving 5'-GCAGC(N8/12)-3'DNA sequences. As opposed to the unstable prototype, which cleaves DNA at 30°C, GeoICI is highly active at elevated temperatures, up to 73°C and over a very wide salt concentration range. Recognition/cleavage sites were determined by: (i) digestion of plasmid and bacteriophage lambda DNA (Λ); (ii) cleavage of custom PCR substrates, (iii) run-off sequencing of GeoICI cleavage products and (iv) shotgun cloning and sequencing of Λ DNA fragmented with GeoICI. Geobacillus sp. genomic DNA was PCR-screened for the presence of other specialized REases-MTases and as a result, another putative REase- MTase, GeoICII, related to the Thermus sp. family of bifunctional REases-methyltransferases (MTases) was detected.


Subject(s)
DNA Restriction Enzymes/chemistry , DNA-Binding Proteins/chemistry , Deoxyribonucleases, Type II Site-Specific/chemistry , Geobacillus/enzymology , Amino Acid Sequence/genetics , Base Sequence/genetics , DNA Restriction Enzymes/genetics , DNA Restriction Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Deoxyribonucleases, Type II Site-Specific/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Enzyme Stability , Substrate Specificity , Temperature
20.
Int J Nanomedicine ; 11: 315-24, 2016.
Article in English | MEDLINE | ID: mdl-26855570

ABSTRACT

A fast, economical, and reproducible method for nanoparticle synthesis has been developed in our laboratory. The reaction is performed in an aqueous environment and utilizes light emitted by commercially available 1 W light-emitting diodes (λ =420 nm) as the catalyst. This method does not require nanoparticle seeds or toxic chemicals. The irradiation process is carried out for a period of up to 10 minutes, significantly reducing the time required for synthesis as well as environmental impact. By modulating various reaction parameters silver nanoparticles were obtained, which were predominantly either spherical or cubic. The produced nanoparticles demonstrated strong antimicrobial activity toward the examined bacterial strains. Additionally, testing the effect of silver nanoparticles on the human keratinocyte cell line and human peripheral blood mononuclear cells revealed that their cytotoxicity may be limited by modulating the employed concentrations of nanoparticles.


Subject(s)
Anti-Infective Agents/pharmacology , Leukocytes, Mononuclear/drug effects , Light , Metal Nanoparticles/chemistry , Silver/chemistry , Water/chemistry , Anti-Infective Agents/chemistry , Bacteria/drug effects , Candida albicans/drug effects , Cell Proliferation/drug effects , Flow Cytometry , Healthy Volunteers , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/radiation effects , Metal Nanoparticles/administration & dosage , Silver/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...