Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Neuroimage ; 227: 117613, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33307223

ABSTRACT

A growing body of empirical evidence supports the notion of diverse neurobiological processes underlying learning-induced plasticity changes in the human brain. There are still open questions about how brain plasticity depends on cognitive task complexity, how it supports interactions between brain systems and with what temporal and spatial trajectory. We investigated brain and behavioural changes in sighted adults during 8-months training of tactile Braille reading whilst monitoring brain structure and function at 5 different time points. We adopted a novel multivariate approach that includes behavioural data and specific MRI protocols sensitive to tissue properties to assess local functional and structural and myelin changes over time. Our results show that while the reading network, located in the ventral occipitotemporal cortex, rapidly adapts to tactile input, sensory areas show changes in grey matter volume and intra-cortical myelin at different times. This approach has allowed us to examine and describe neuroplastic mechanisms underlying complex cognitive systems and their (sensory) inputs and (motor) outputs differentially, at a mesoscopic level.


Subject(s)
Brain/diagnostic imaging , Learning/physiology , Neuronal Plasticity/physiology , Reading , Sensory Aids , Touch Perception/physiology , Adaptation, Physiological/physiology , Adult , Brain/physiology , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging
3.
Neuroimage ; 221: 117087, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32593802

ABSTRACT

The androgen receptor (AR), oestrogen receptor alpha (ESR1) and oestrogen receptor beta (ESR2) play essential roles in mediating the effect of sex hormones on sex differences in the brain. Using Voxel-based morphometry (VBM) and gene sizing in two independent samples (discovery n â€‹= â€‹173, replication â€‹= â€‹61), we determine the common and unique influences on brain sex differences in grey (GM) and white matter (WM) volume between repeat lengths (n) of microsatellite polymorphisms AR(CAG)n, ESR1(TA)n and ESR2(CA)n. In the hypothalamus, temporal lobes, anterior cingulate cortex, posterior insula and prefrontal cortex, we find increased GM volume with increasing AR(CAG)n across sexes, decreasing ESR1(TA)n across sexes and decreasing ESR2(CA)n in females. Uniquely, AR(CAG)n was positively associated with dorsolateral prefrontal and orbitofrontal GM volume and the anterior corona radiata, left superior fronto-occipital fasciculus, thalamus and internal capsule WM volume. ESR1(TA)n was negatively associated with the left superior corona radiata, left cingulum and left inferior longitudinal fasciculus WM volume uniquely. ESR2(CA)n was negatively associated with right fusiform and posterior cingulate cortex uniquely. We thus describe the neuroanatomical correlates of three microsatellite polymorphisms of steroid hormone receptors and their relationship to sex differences.


Subject(s)
Cerebral Cortex/anatomy & histology , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Gray Matter/anatomy & histology , Hypothalamus/anatomy & histology , Receptors, Androgen/genetics , Sex Characteristics , White Matter/anatomy & histology , Adolescent , Adult , Aged , Cerebral Cortex/diagnostic imaging , Female , Gray Matter/diagnostic imaging , Humans , Hypothalamus/diagnostic imaging , Magnetic Resonance Imaging , Male , Microsatellite Repeats , Middle Aged , Neuroimaging , Polymorphism, Genetic , White Matter/diagnostic imaging , Young Adult
5.
F1000Res ; 7: 620, 2018.
Article in English | MEDLINE | ID: mdl-30210786

ABSTRACT

Translation in cognitive neuroscience remains beyond the horizon, brought no closer by supposed major advances in our understanding of the brain. Unless our explanatory models descend to the individual level-a cardinal requirement for any intervention-their real-world applications will always be limited. Drawing on an analysis of the informational properties of the brain, here we argue that adequate individualisation needs models of far greater dimensionality than has been usual in the field. This necessity arises from the widely distributed causality of neural systems, a consequence of the fundamentally adaptive nature of their developmental and physiological mechanisms. We discuss how recent advances in high-performance computing, combined with collections of large-scale data, enable the high-dimensional modelling we argue is critical to successful translation, and urge its adoption if the ultimate goal of impact on the lives of patients is to be achieved.


Subject(s)
Brain/physiology , Cognitive Neuroscience/methods , Models, Neurological , Causality , Cognition , Comprehension , Humans , Individuation
6.
Front Hum Neurosci ; 11: 231, 2017.
Article in English | MEDLINE | ID: mdl-28567009

ABSTRACT

Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional independence or modularity exists in this distributed anatomical-cognitive system.

7.
Alzheimers Dement (Amst) ; 7: 107-114, 2017.
Article in English | MEDLINE | ID: mdl-28653033

ABSTRACT

INTRODUCTION: Certain personality traits are associated with higher risk of Alzheimer's disease, similar to cognitive impairment. The identification of biological markers associated with personality in mild cognitive impairment could advance the early detection of Alzheimer's disease. METHODS: We used hierarchical multivariate linear models to quantify the interaction between personality traits, state of cognitive impairment, and MRI biomarkers (gray matter brain volume, gray matter mean water diffusion) in the medial temporal lobe (MTL). RESULTS: Over and above a main effect of cognitive state, the multivariate linear model showed significant interaction between cognitive state and personality traits predicting MTL abnormality. The interaction effect was mainly driven by neuroticism and its facets (anxiety, depression, and stress) and was associated with right-left asymmetry and an anterior to posterior gradient in the MTL. DISCUSSION: Our results support the hypothesis that personality traits can alter the vulnerability and pathoplasticity of disease and therefore modulate related biomarker expression.

9.
PLoS One ; 11(6): e0156882, 2016.
Article in English | MEDLINE | ID: mdl-27359335

ABSTRACT

INTRODUCTION: Attaining an accurate diagnosis in the acute phase for severely brain-damaged patients presenting Disorders of Consciousness (DOC) is crucial for prognostic validity; such a diagnosis determines further medical management, in terms of therapeutic choices and end-of-life decisions. However, DOC evaluation based on validated scales, such as the Revised Coma Recovery Scale (CRS-R), can lead to an underestimation of consciousness and to frequent misdiagnoses particularly in cases of cognitive motor dissociation due to other aetiologies. The purpose of this study is to determine the clinical signs that lead to a more accurate consciousness assessment allowing more reliable outcome prediction. METHODS: From the Unit of Acute Neurorehabilitation (University Hospital, Lausanne, Switzerland) between 2011 and 2014, we enrolled 33 DOC patients with a DOC diagnosis according to the CRS-R that had been established within 28 days of brain damage. The first CRS-R assessment established the initial diagnosis of Unresponsive Wakefulness Syndrome (UWS) in 20 patients and a Minimally Consciousness State (MCS) in the remaining13 patients. We clinically evaluated the patients over time using the CRS-R scale and concurrently from the beginning with complementary clinical items of a new observational Motor Behaviour Tool (MBT). Primary endpoint was outcome at unit discharge distinguishing two main classes of patients (DOC patients having emerged from DOC and those remaining in DOC) and 6 subclasses detailing the outcome of UWS and MCS patients, respectively. Based on CRS-R and MBT scores assessed separately and jointly, statistical testing was performed in the acute phase using a non-parametric Mann-Whitney U test; longitudinal CRS-R data were modelled with a Generalized Linear Model. RESULTS: Fifty-five per cent of the UWS patients and 77% of the MCS patients had emerged from DOC. First, statistical prediction of the first CRS-R scores did not permit outcome differentiation between classes; longitudinal regression modelling of the CRS-R data identified distinct outcome evolution, but not earlier than 19 days. Second, the MBT yielded a significant outcome predictability in the acute phase (p<0.02, sensitivity>0.81). Third, a statistical comparison of the CRS-R subscales weighted by MBT became significantly predictive for DOC outcome (p<0.02). DISCUSSION: The association of MBT and CRS-R scoring improves significantly the evaluation of consciousness and the predictability of outcome in the acute phase. Subtle motor behaviour assessment provides accurate insight into the amount and the content of consciousness even in the case of cognitive motor dissociation.


Subject(s)
Consciousness Disorders/diagnosis , Recovery of Function/physiology , Adolescent , Adult , Aged , Consciousness Disorders/physiopathology , Consciousness Disorders/rehabilitation , Female , Humans , Male , Middle Aged , Physical Examination , Prognosis , Treatment Outcome , Young Adult
10.
Hum Brain Mapp ; 37(5): 1801-15, 2016 May.
Article in English | MEDLINE | ID: mdl-26876452

ABSTRACT

The high gray-white matter contrast and spatial resolution provided by T1-weighted magnetic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy studies of the brain. While the image intensity in T1-weighted images is predominantly driven by T1, other MRI parameters affect the image contrast, and hence brain morphological measures derived from the data. Because MRI parameters are correlates of different histological properties of brain tissue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an issue which remains largely ignored in the community. We acquired quantitative maps of the MRI parameters that determine signal intensities in T1-weighted images (R1 (=1/T1), R2 *, and PD) in a large cohort of healthy subjects (n = 120, aged 18-87 years). Synthetic T1-weighted images were calculated from these quantitative maps and used to extract morphometry features-gray matter volume and cortical thickness. We observed significant variations in morphometry measures obtained from synthetic images derived from different subsets of MRI parameters. We also detected a modulation of these variations by age. Our findings highlight the impact of microstructural properties of brain tissue-myelination, iron, and water content-on automated measures of brain morphology and show that microstructural tissue changes might lead to the detection of spurious morphological changes in computational anatomy studies. They motivate a review of previous morphological results obtained from standard anatomical MRI images and highlight the value of quantitative MRI data for the inference of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801-1815, 2016. © 2016 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.


Subject(s)
Brain Mapping , Brain/diagnostic imaging , Magnetic Resonance Imaging , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Brain/anatomy & histology , Female , Gray Matter/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Young Adult
11.
J Neurol Neurosurg Psychiatry ; 87(3): 332-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25855401

ABSTRACT

BACKGROUND: Psychogenic non-epileptic seizures (PNES) are involuntary paroxysmal events that are unaccompanied by epileptiform EEG discharges. We hypothesised that PNES are a disorder of distributed brain networks resulting from their functional disconnection.The disconnection may underlie a dissociation mechanism that weakens the influence of unconsciously presented traumatising information but exerts maladaptive effects leading to episodic failures of behavioural control manifested by psychogenic 'seizures'. METHODS: To test this hypothesis, we compared functional connectivity (FC) derived from resting state high-density EEGs of 18 patients with PNES and 18 age-matched and gender-matched controls. To this end, the EEGs were transformed into source space using the local autoregressive average inverse solution. FC was estimated with a multivariate measure of lagged synchronisation in the θ, α and ß frequency bands for 66 brain sites clustered into 18 regions. A multiple comparison permutation test was applied to deduce significant between-group differences in inter-regional and intraregional FC. RESULTS: The significant effect of PNES-a decrease in lagged FC between the basal ganglia and limbic, prefrontal, temporal, parietal and occipital regions-was found in the α band. CONCLUSION: We believe that this finding reveals a possible neurobiological substrate of PNES, which explains both attenuation of the effect of potentially disturbing mental representations and the occurrence of PNES episodes. By improving understanding of the aetiology of this condition, our results suggest a potential refinement of diagnostic criteria and management principles.


Subject(s)
Alpha Rhythm/physiology , Basal Ganglia/physiopathology , Brain/physiopathology , Seizures/physiopathology , Adolescent , Adult , Case-Control Studies , Electroencephalography , Female , Humans , Male , Middle Aged , Neural Pathways/physiopathology , Young Adult
12.
J Magn Reson Imaging ; 43(6): 1445-54, 2016 06.
Article in English | MEDLINE | ID: mdl-26606758

ABSTRACT

PURPOSE: To develop a method to automatically detect multiple sclerosis (MS) lesions, located both in white matter (WM) and in the cortex, in patients with low disability and early disease stage. MATERIALS AND METHODS: We developed a lesion detection method, based on the k-nearest neighbor (k-NN) technique, to detect lesions as small as 0.0036 mL. This method uses the image intensity information from up to four different 3D magnetic resonance imaging (MRI) sequences (magnetization-prepared rapid gradient-echo, MPRAGE; magnetization-prepared two inversion-contrast rapid gradient-echo, MP2RAGE; 3D fluid-attenuated inversion recovery, FLAIR; and 3D double-inversion recovery, DIR), acquired on a 3T scanner. To these intensity features we added the information obtained by the spatial coordinates and tissue prior probabilities provided by the International Consortium for Brain Mapping (ICBM). Quantitative assessment was done in 39 early-stage MS patients with a "leave-one-out" cross-validation. RESULTS: The best lesion detection rate (DR) performance in WM was obtained using MP2RAGE, FLAIR, and DIR intensities (77% for lesions ≥0.0036 mL; 85% for lesions ≥0.005 mL). Similar results were obtained excluding the DIR intensity as well as when using only MPRAGE and FLAIR (DR = 75%, P = 0.5720). However, the combination of FLAIR with DIR and MP2RAGE appeared to be the best for detecting cortical lesions (DR = 62%), compared to the other combination of sequences (P < 0.001). CONCLUSION: For WM lesion detection, similar results were observed when only conventional clinical sequences (FLAIR, MPRAGE) were used compared to a combination of conventional and "advanced" sequences (MP2RAGE, DIR). Cortical lesion detection increased significantly when "advanced" sequences were used. J. Magn. Reson. Imaging 2015. J. Magn. Reson. Imaging 2016;43:1445-1454.


Subject(s)
Cerebral Cortex/diagnostic imaging , Diffusion Tensor Imaging/methods , Image Interpretation, Computer-Assisted/methods , Multiple Sclerosis/diagnostic imaging , Pattern Recognition, Automated/methods , White Matter/diagnostic imaging , Adult , Cerebral Cortex/pathology , Disease Progression , Early Diagnosis , Female , Humans , Imaging, Three-Dimensional/methods , Machine Learning , Male , Multiple Sclerosis/pathology , Reproducibility of Results , Sensitivity and Specificity , White Matter/pathology
13.
Philos Trans R Soc Lond B Biol Sci ; 370(1668)2015 May 19.
Article in English | MEDLINE | ID: mdl-25823868

ABSTRACT

Cerebral cartography can be understood in a limited, static, neuroanatomical sense. Temporal information from electrical recordings contributes information on regional interactions adding a functional dimension. Selective tagging and imaging of molecules adds biochemical contributions. Cartographic detail can also be correlated with normal or abnormal psychological or behavioural data. Modern cerebral cartography is assimilating all these elements. Cartographers continue to collect ever more precise data in the hope that general principles of organization will emerge. However, even detailed cartographic data cannot generate knowledge without a multi-scale framework making it possible to relate individual observations and discoveries. We propose that, in the next quarter century, advances in cartography will result in progressively more accurate drafts of a data-led, multi-scale model of human brain structure and function. These blueprints will result from analysis of large volumes of neuroscientific and clinical data, by a process of reconstruction, modelling and simulation. This strategy will capitalize on remarkable recent developments in informatics and computer science and on the existence of much existing, addressable data and prior, though fragmented, knowledge. The models will instantiate principles that govern how the brain is organized at different levels and how different spatio-temporal scales relate to each other in an organ-centred context.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/anatomy & histology , Cerebral Cortex/physiology , Brain Diseases/classification , Humans , Research Design
14.
Neuroimage ; 110: 1-2, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25620491

ABSTRACT

Recently in this journal, Alkemade and Forstmann again challenged the evidence for a tripartite organisation to the subthalamic nucleus (STN) (Alkemade & Forstmann 2014). Additionally, they raised specific issues with the earlier published results using 3T MRI to perform in vivo diffusion weighted imaging (DWI) based segmentation of the STN (Lambert et al. 2012). Their comments reveal a common misconception related to the underlying methodologies used, which we clarify in this reply, in addition to highlighting how their current conclusions are synonymous with our original paper. The ongoing debate, instigated by the controversies surrounding STN parcellation, raises important implications for the assumptions and methodologies employed in mapping functional brain anatomy, both in vivo and ex vivo, and reveals a fundamental emergent problem with the current techniques. These issues are reviewed, and potential strategies that could be developed to manage them in the future are discussed further.


Subject(s)
Subthalamic Nucleus/anatomy & histology , Subthalamic Nucleus/physiology , Brain Mapping , Deep Brain Stimulation , Humans , Magnetic Resonance Imaging
15.
Cortex ; 59: 146-52, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25017648

ABSTRACT

Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.


Subject(s)
Cerebellar Neoplasms/physiopathology , Motion Perception/physiology , Nerve Net/physiopathology , Neuronal Plasticity/physiology , Adult , Brain Mapping , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/surgery , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Nerve Net/pathology , Visual Perception/physiology
16.
Proc Natl Acad Sci U S A ; 111(3): 1156-61, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24379394

ABSTRACT

There remains much scientific, clinical, and ethical controversy concerning the use of electroconvulsive therapy (ECT) for psychiatric disorders stemming from a lack of information and knowledge about how such treatment might work, given its nonspecific and spatially unfocused nature. The mode of action of ECT has even been ascribed to a "barbaric" form of placebo effect. Here we show differential, highly specific, spatially distributed effects of ECT on regional brain structure in two populations: patients with unipolar or bipolar disorder. Unipolar and bipolar disorders respond differentially to ECT and the associated local brain-volume changes, which occur in areas previously associated with these diseases, correlate with symptom severity and the therapeutic effect. Our unique evidence shows that electrophysical therapeutic effects, although applied generally, take on regional significance through interactions with brain pathophysiology.


Subject(s)
Electroconvulsive Therapy/methods , Mood Disorders/physiopathology , Mood Disorders/therapy , Neuronal Plasticity , Adult , Bipolar Disorder/therapy , Brain Mapping , Deep Brain Stimulation/methods , Depression/therapy , Electrophysiology , False Positive Reactions , Female , Hippocampus/metabolism , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Treatment Outcome
17.
Hum Brain Mapp ; 35(5): 1865-74, 2014 May.
Article in English | MEDLINE | ID: mdl-23723177

ABSTRACT

Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Aged , Aged, 80 and over , Algorithms , Brain Mapping , Female , Humans , Male , Middle Aged
18.
Neuroimage Clin ; 2: 684-94, 2013.
Article in English | MEDLINE | ID: mdl-24179820

ABSTRACT

The human brainstem is a densely packed, complex but highly organised structure. It not only serves as a conduit for long projecting axons conveying motor and sensory information, but also is the location of multiple primary nuclei that control or modulate a vast array of functions, including homeostasis, consciousness, locomotion, and reflexive and emotive behaviours. Despite its importance, both in understanding normal brain function as well as neurodegenerative processes, it remains a sparsely studied structure in the neuroimaging literature. In part, this is due to the difficulties in imaging the internal architecture of the brainstem in vivo in a reliable and repeatable fashion. A modified multivariate mixture of Gaussians (mmMoG) was applied to the problem of multichannel tissue segmentation. By using quantitative magnetisation transfer and proton density maps acquired at 3 T with 0.8 mm isotropic resolution, tissue probability maps for four distinct tissue classes within the human brainstem were created. These were compared against an ex vivo fixated human brain, imaged at 0.5 mm, with excellent anatomical correspondence. These probability maps were used within SPM8 to create accurate individual subject segmentations, which were then used for further quantitative analysis. As an example, brainstem asymmetries were assessed across 34 right-handed individuals using voxel based morphometry (VBM) and tensor based morphometry (TBM), demonstrating highly significant differences within localised regions that corresponded to motor and vocalisation networks. This method may have important implications for future research into MRI biomarkers of pre-clinical neurodegenerative diseases such as Parkinson's disease.

19.
Neuroimage Clin ; 3: 84-94, 2013.
Article in English | MEDLINE | ID: mdl-24179852

ABSTRACT

The early diagnostic value of glucose hypometabolism and atrophy as potential neuroimaging biomarkers of mild cognitive impairment (MCI) and Alzheimer's disease (AD) have been extensively explored using [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (MRI). The vast majority of previous imaging studies neglected the effects of single factors, such as age, symptom severity or time to conversion in MCI thus limiting generalisability of results across studies. Here, we investigated the impact of these factors on metabolic and structural differences. FDG-PET and MRI data from AD patients (n = 80), MCI converters (n = 65) and MCI non-converters (n = 64) were compared to data of healthy subjects (n = 79). All patient groups were split into subgroups by age, time to conversion (for MCI), or symptom severity and compared to the control group. AD patients showed a strongly age-dependent pattern, with younger patients showing significantly more extensive reductions in gray matter volume and glucose utilisation. In the MCI converter group, the amount of glucose utilisation reduction was linked to the time to conversion but not to atrophy. Our findings indicate that FDG-PET might be more closely linked to future cognitive decline whilst MRI being more closely related to the current cognitive state reflects potentially irreversible damage.

20.
PLoS One ; 8(8): e72759, 2013.
Article in English | MEDLINE | ID: mdl-24023644

ABSTRACT

The preclinical Alzheimer's disease (AD) - amnestic mild cognitive impairment (MCI) - is manifested by phenotypes classified into exclusively memory (single-domain) MCI (sMCI) and multiple-domain MCI (mMCI). We suggest that typical MCI-to-AD progression occurs through the sMCI-to-mMCI sequence as a result of the extension of initial pathological processes. To support this hypothesis, we assess myelin content with a Magnetization Transfer Ratio (MTR) in 21 sMCI and 21 mMCI patients and in 42 age-, sex-, and education-matched controls. A conjunction analysis revealed MTR reduction shared by sMCI and mMCI groups in the medial temporal lobe and posterior structures including white matter (WM: splenium, posterior corona radiata) and gray matter (GM: hippocampus; parahippocampal and lingual gyri). A disjunction analysis showed the spread of demyelination to prefrontal WM and insula GM in executive mMCI. Our findings suggest that demyelination starts in the structures affected by neurofibrillary pathology; its presence correlates with the clinical picture and indicates the method of MCI-to-AD progression. In vivo staging of preclinical AD can be developed in terms of WM/GM demyelination.


Subject(s)
Alzheimer Disease/complications , Alzheimer Disease/pathology , Cognitive Dysfunction/complications , Demyelinating Diseases/complications , Disease Progression , Aged , Alzheimer Disease/physiopathology , Amnesia/complications , Amnesia/pathology , Amnesia/physiopathology , Case-Control Studies , Cognitive Dysfunction/physiopathology , Demography , Demyelinating Diseases/physiopathology , Female , Hippocampus/pathology , Humans , Linear Models , Male , Memory , Neuropsychological Tests , Organ Size
SELECTION OF CITATIONS
SEARCH DETAIL
...