Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930325

ABSTRACT

This study involved the optimization of the molded pieces manufacturing process from a poly-3-hydroxybutyrate-co-3-hydroxyvalerate biocomposite containing 30% wood flour by mass. The amount of wood flour and preliminary processing parameters were determined on the basis of preliminary tests. The aim of the optimization was to find the configuration of important parameters of the injection process to obtain molded pieces of good quality, in terms of aesthetics, dimensions, and mechanical properties. The products tested for quality were dog bone specimens. The biocomposite was produced using a single-screw extruder, whereas molded pieces were made using an injection molding process. The Taguchi method was applied to optimize the injection molding parameters, which determine the products quality. Control factors were selected at three levels. The L27 orthogonal plan was used. For each set of input parameters from this plan, four processing tests were performed. The sample weight, shrinkage, elongation at break, tensile strength, and Young's modulus were selected to assess the quality of the molded parts. As a result of the research, the processing parameters of the tested biocomposite were determined, enabling the production of good-quality molded pieces. No common parameter configuration was found for different optimization criteria. Further research should focus on finding a different range of technological parameters. At the same time, it was found that the range of processing parameters of the produced biocomposite, especially processing temperature, made it possible to use it in the Wood Polymer Composites segment.

2.
Materials (Basel) ; 17(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203909

ABSTRACT

An important issue addressed in research on the assessment of the quality of polymer products is the quality of the polymer material itself and, in accordance with the idea of waste-free management, the impact of its repeated processing on its properties and the quality of the products. In this work, a biocomposite, based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with short hemp fibers, was obtained and repeatedly processed, which is a continuation of the research undertaken by the team in the field of this type of biocomposites. After subsequent stages of processing, the selected mechanical, processing and functional properties of the products were assessed. For this purpose, microscopic tests were carried out, mechanical properties were tested in static tensile and impact tests, viscosity curves were determined after subsequent processing cycles and changes in plastic pressure in the mold cavity were determined directly during processing. The results of the presented research confirm only a slight decrease in the mechanical properties of the produced type of biocomposite, even after it has been reprocessed five times, which gives extra weight to arguments for its commercialization as a substitute for petrochemical-based plastics. No significant changes were found in the used parameters and processing properties with the stages of processing, which allows for a predictable and stable manufacturing process using, for example, the injection molding process.

3.
Polymers (Basel) ; 14(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36559736

ABSTRACT

The paper presents a comparative analysis of two extrusion methods of biocomposites with a poly(3-hydroxybutyrate-co-3-hydroxyvalerate acid) (PHBV) matrix filled with flax and hemp fibers in terms of biopolymer production, its processing in the further injection process, and an evaluation of the mechanical and functional properties of the products. Biocomposites containing 15% by weight of the filler were produced using single- and twin-screw extruders. The biocomposites were then processed by injection molding and then, among other things, the pressures in the mold cavity during processing were analyzed. The produced samples were tested by means of the following tests: uniaxial tensile strength, hardness, and impact tensile strength. The biocomposite's microstructure was also analyzed using scanning electron microscopy (SEM), as were the shrinkage and water absorption of the manufactured products. In addition, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests were performed. It was found that the extrusion method changed significantly the geometry of the filler fibers and the processing capabilities of the manufactured materials. Significant differences in the mechanical and functional properties of the obtained biocomposite products were also found. On their basis, the advantages and disadvantages of both extrusion methods were discussed. Most of the obtained properties of injection products indicate the choice of single-screw extrusion. The products were characterized by slightly better mechanical properties and lower processing shrinkage. In turn, composites obtained by the screw method were characterized by lower water absorption and lower viscosity of the composite during injection molding.

4.
Materials (Basel) ; 15(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36363123

ABSTRACT

This paper aims to experimentally determine the properties of the poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]-(PHBV)-30% hemp fiber biocomposite, which is important in terms of numerical simulations of product manufacturing, and to evaluate the mechanical properties by means of micromechanical modeling. The biocomposite was manufactured using a single-screw extruder. Specimens for testing were produced by applying the injection molding technology. Utilizing the simulation results of the plastic flow, carried out by the Moldflow Insight 2016 commercial software and the results of experimental tests, the forecasts of selected composite mechanical properties were performed by means of both numerical and analytical homogenization methods. For this purpose, the Digimat software was applied. The necessary experimental data to perform the calculations for the polymer matrix, fibers, and the biocomposite were obtained by rheological and thermal studies as well as elementary mechanical tests. In the paper, the method of determining selected properties of the biocomposite and the method of forecasting its other properties are discussed. It shows the dependence of the predicted, selected properties of the biocomposite on the filler geometry assumed in the calculations and the homogenization method adopted for the calculations. The results of the work allow for the prediction of properties of the PHBV biocomposites-hemp fiber for any amount of filler used. Moreover, the results allow for the estimation of the usefulness of homogenization methods for the prediction of properties of the PHBV-hemp fiber biocomposites. Furthermore, it was found that for the developed and tested biocomposites, the most effective possibility of mechanical properties prediction is using the Mori-Tanaka homogenization model, which unfortunately has some limitations.

5.
Polymers (Basel) ; 13(22)2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34833232

ABSTRACT

This work is inspired by the current European policies that aim to reduce plastic waste. This is especially true of the packaging industry. The biocomposites developed in the work belong to the group of environmentally friendly plastics that can reduce the increasing costs of environmental fees in the future. Three types of short fibers (flax, hemp and wood) with a length of 1 mm each were selected as fillers (30% mass content in PHBV). The biocomposites were extruded and then processed by the injection molding process with the same technical parameters. The samples obtained in this way were tested for mechanical properties and quality of the molded pieces. A significant improvement of some mechanical properties of biocomposites containing hemp and flax fibers and quality of molded pieces was obtained in comparison with pure PHBV. Only in the case of wood-PHBV biocomposites was no significant improvement of properties obtained compared to biocomposites with other fillers used in this research. The use of natural fibers, in particular hemp fibers as a filler in the PHBV matrix, in most cases has a positive effect on improving the mechanical properties and quality of molded pieces. In addition, it should be remembered that the obtained biocomposites are of natural origin and are fully biodegradable, which are interesting and desirable properties that are a part of the current trend regarding the production and commercialization of modern biomaterials.

6.
Polymers (Basel) ; 13(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502986

ABSTRACT

In order to determine the structure homogeneity of biocomposites filled with fibers, as well as the evaluation of fibers' arrangement and their orientation on the sample cross-section at varied injection rates, a study was conducted using computed tomography (CT). The main advantage of this test is the fact that in order to assess the microstructure on cross-sections, the samples do not have to be processed mechanically, which allows for presenting the actual image of the microstructure. The paper presents the issues of such tests for the biocomposite of poly (3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV)-hemp fibers. It should be emphasized that CT scanning of PHBV-hemp fiber biocomposites is quite difficult to perform due to the similar density of the fibers and the polymer matrix. Due to the high difficulty of distinguishing fibers against the background of the polymer matrix during CT examination, a biocomposite containing 15% hemp fibers was analyzed. The samples for testing were manufactured using the injection molding process at variable injection rates, i.e., 10, 35 and 70 cm3/s. The images obtained by computed tomography show the distribution of hemp fibers and their clusters in the PHBV matrix and the degree of porosity on the sample cross-section. There were significant microstructural differences for the samples injected at the highest injection rates, including, among others, the occurrence of a smaller number of fibers and pores on the surface layer of the molded piece. The phenomenon observed was verified by testing chosen mechanical properties, shrinkage and water absorption of the samples. Some properties improved with an increasing injection rate, while others deteriorated and vice versa. An analysis of biocomposites' microstructures using computed tomography provides a wide range of possibilities for future research, including an assessment of the structure of the molded parts. These tests may allow one, for example, to detect the cause of molded piece properties decreasing in a specific area as a result of a high degree of fiber disorientation, as well as the defects resulting from high porosity of the material. Such analyses can be particularly useful for producers that deal with the injection molding of pieces molded with specific properties.

7.
Polymers (Basel) ; 13(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198616

ABSTRACT

This study assessed the impact of alkali treatment of hemp and flax fibers on mechanical properties (determined by means of the uniaxial tensile test, impact tensile strength test and hardness test), processing properties (the course of the extrusion and injection process) and usable properties (shrinkage of molded pieces, degree of water absorption) of biocomposites on the base of poly (3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV) biopolymer. For this purpose, 1 mm of length flax and hemp fibers was surface-modified by means of aqueous solution of NaOH (sodium hydroxide) with concentrations of 2%, 5% and 10%. The composites were made using the extrusion technology. The test specimens were produced by injection molding technology. In total, eight types of biocomposites with modified and non-modified fibers were produced, and each biocomposite contained the same filler content (15 wt.%). Their properties were compared in some cases with pure PHBV polymer. In the case of biocomposites filled with hemp fibers, it was noted that an increase of the alkalizing solution concentration improved most of the tested properties of the obtained biocomposites. On the other hand, in the case of flax fibers, there was a significant decrease in most of the mechanical properties tested for the composite containing fibers etched by 10% NaOH solution. The obtained results were verified by examining fibers and the destroyed specimens with a scanning electron microscope (SEM) and an optical microscope, which confirmed, especially, the significant geometry changes of the flax fibers etched by 10% NaOH solution. This procedure also resulted in a significant change of processing properties-a composite of this fiber type required about 20 °C lower temperature during the extrusion and injection molding process in order to obtain the right product. These results lead to the important conclusion that for each filler of the plant-origin and polymer matrix, the fiber alkalization method should be selected individually in order to improve the specific properties of biocomposites.

8.
Acta Bioeng Biomech ; 22(1): 97-110, 2020.
Article in English | MEDLINE | ID: mdl-32307454

ABSTRACT

Poly(3-hydroxybutyrate) is a biopolymer used to production of implants in the human body. On the other hand, the physical and mechanical properties of poly(3-hydroxybutyrate) are compared to the properties of isotactic polypropylene what makes poly(3-hydroxybutyrate) possible substitute for polypropylene. Unfortunately, the melting point of poly(3-hydroxybutyrate) is almost equal to its degradation temperature what gives very narrow window of its processing conditions. Therefore, numerous attempts are being made to improve the poly(3-hydroxybutyrate) properties. In the present work, hybrid nanobiocomposites based on poly(3-hydroxybutyrate) as a matrix with the use of organic nanoclay - Cloisite 30B and linear polyurethane as a second filler have been manufactured. The linear polyurethane was based on diphenylmethane 4,4'-diisocyanate and diol with imidazoquinazoline rings. The obtained nanobiocomposites were characterized by X-ray diffraction, scanning and transmission electron microscopies, thermogravimetry, differential scanning calorimetry and their selected mechanical properties were tested. The resulting hybrid nanobiocomposites have intercalated/exfoliated structure. The nanobiocomposites are characterized by a higher thermal stability and a wider range of processing temperatures compared to the unfilled matrix. The plasticizing influence of nanofillers was also observed. In addition, the mechanical properties of the discussed nanobiocomposites were examined and compared to those of the unfilled poly(3-hydroxybutyrate). The new-obtained nanobiocomposites based on poly(3-hydroxybutyrate) containing 1% Cloisite 30B and 5 wt. % of the linear of polyurethane characterized the highest improvement of processing conditions. They have the biggest difference between the temperature of degradation and the onset melting temperature, about 100 °C.


Subject(s)
Hydroxybutyrates/chemistry , Materials Testing , Mechanical Phenomena , Nanocomposites/chemistry , Polyesters/chemistry , Temperature , Crystallization , Hardness , Nanocomposites/ultrastructure , Rheology , Scattering, Small Angle , Tensile Strength , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...