ABSTRACT
In patients with ANCA-associated vasculitis, interactions between neutrophils and endothelial cells cause endothelial damage and imbalance. Endothelial colony-forming cells (ECFCs) represent a cellular population of the endothelial lineage with proliferative capacity and vasoreparative properties. This study aimed to evaluate the angiogenic capacity of ECFCs of patients with granulomatosis with polyangiitis (GPA). The ECFCs of 13 patients with PR3-positive GPA and 14 healthy controls were isolated and characterized using fluorescence-activated cell sorting, capillary tube formation measurement, scratching assays and migration assays with and without plasma stimulation. Furthermore, three patients with active disease underwent post-treatment recollection of ECFCs for longitudinal evaluation. The ECFCs from the patients and controls showed similar capillary structure formation. However, the ECFCs from the patients with inactive GPA exhibited early losses of angiogenic capacity. Impairments in the migration capacities of the ECFCs were also observed in patients with GPA and controls (12th h, p = 0.05). Incubation of ECFCs from patients with GPA in remission with plasma from healthy controls significantly decreased migration capacity (p = 0.0001). Longitudinal analysis revealed that treatment significantly lowered ECFC migration rates. This study revealed that ECFCs from the patients with PR3-positive GPA in remission demonstrated early losses of tube formation and reduced migration capacity compared to those of the healthy controls, suggesting impairment of endothelial function.
Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Granulomatosis with Polyangiitis , Cells, Cultured , Endothelial Cells/physiology , HumansABSTRACT
Anti-drug antibody (ADA) development is a significant complication in the treatment of several conditions. For decades, the mainstay of hemophilia A treatment was the replacement of deficient coagulation factor VIII (FVIII) to restore hemostasis, control, and prevent bleeding events. Recently, new products have emerged for hemophilia A replacement therapy, including bioengineered FVIII molecules with enhanced pharmacokinetic profiles: the extended half-life (EHL) recombinant FVIII products. However, the main complication resulting from replacement treatment in hemophilia A is the development of anti-FVIII neutralizing alloantibodies, known as inhibitors, affecting approximately 25-30% of severe hemophilia A patients. Therefore, the immunogenicity of each FVIII product and the mechanisms that could help increase the tolerance to these products have become important research topics in hemophilia A. Furthermore, patients with inhibitors continue to require effective treatment for breakthrough bleedings and procedures, despite the availability of non-replacement therapy, such as emicizumab. Herein, we discuss the currently licensed treatments available for hemophilia A and the immunogenicity of new therapies, such as EHL-rFVIII products, compared to other products available.