Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 25(6): 1757-66, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17432963

ABSTRACT

In the mammalian central nervous system, transporter-mediated reuptake may be critical for terminating the neurotransmitter action of D-serine at the strychnine insensitive glycine site of the NMDA receptor. The Na(+) independent amino acid transporter alanine-serine-cysteine transporter 1 (Asc-1) has been proposed to account for synaptosomal d-serine uptake by virtue of its high affinity for D-serine and widespread neuronal expression throughout the brain. Here, we sought to validate the contribution of Asc-1 to D-serine uptake in mouse brain synaptosomes using Asc-1 gene knockout (KO) mice. Total [(3)H]D-serine uptake in forebrain and cerebellar synaptosomes from Asc-1 knockout mice was reduced to 34 +/- 5% and 22 +/- 3% of that observed in wildtype (WT) mice, respectively. When the Na(+) dependent transport components were removed by omission of Na(+) ions in the assay buffer, D-serine uptake in knockout mice was reduced to 8 +/- 1% and 3 +/- 1% of that measured in wildtype mice in forebrain and cerebellum, respectively, suggesting Asc-1 plays a major role in the Na(+) independent transport of D-serine. Potency determination of D-serine uptake showed that Asc-1 mediated rapid high affinity Na(+) independent uptake with an IC(50) of 19 +/- 1 microm. The remaining uptake was mediated predominantly via a low affinity Na(+) dependent transporter with an IC(50) of 670 +/- 300 microm that we propose is the glial alanine-serine-cysteine transporter 2 (ASCT2) transporter. The results presented reveal that Asc-1 is the only high affinity D-serine transporter in the mouse CNS and is the predominant mechanism for D-serine reuptake.


Subject(s)
Amino Acid Transport System y+/deficiency , Amino Acid Transport System y+/physiology , Central Nervous System/metabolism , Serine/metabolism , Amino Acid Transport Systems/deficiency , Amino Acid Transport Systems/metabolism , Animals , Biological Transport/drug effects , Biological Transport/genetics , Cells, Cultured , Central Nervous System/cytology , Dose-Response Relationship, Drug , Embryo, Mammalian , Mice , Mice, Inbred C57BL , Mice, Knockout , Serine/pharmacokinetics , Sodium/metabolism , Synaptosomes/metabolism , Synaptosomes/ultrastructure
2.
J Psychopharmacol ; 21(4): 384-91, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17092983

ABSTRACT

Non-selective benzodiazepines, such as diazepam, interact with equivalent affinity and agonist efficacy at GABA(A) receptors containing either an alpha1, alpha2, alpha3 or alpha5 subunit. However, which of these particular subtypes are responsible for the anticonvulsant effects of diazepam remains uncertain. In the present study, we examined the ability of diazepam to reduce pentylenetetrazoLe (PTZ)-induced and maximal electroshock (MES)-induced seizures in mice containing point mutations in single (alpha1H101R, alpha2H101R or alpha5H105R) or multiple (alpha125H-->R) alpha subunits that render the resulting GABA(A) receptors diazepam-insensitive. Furthermore, the anticonvulsant properties of diazepam, the alpha1- and alpha3-selective compounds zolpidem and TP003, respectively, and the alpha2/alpha3 preferring compound TP13 were studied against PTZ-induced seizures. In the transgenic mice, no single subtype was responsible for the anticonvulsant effects of diazepam in either the PTZ or MES assay and neither the alpha3 nor alpha5 subtypes appeared to confer anticonvulsant activity. Moreover, whereas the alpha1 and alpha2 subtypes played a modest role with respect to the PTZ assay, they had a negligible role in the MES assay. With respect to subtype-selective compounds, zolpidem and TP003 had much reduced anticonvulsant efficacy relative to diazepam in both the PTZ and MES assays whereas TP13 had high anticonvulsant efficacy in the PTZ but not the MES assay. Taken together, these data not only indicate a role for alpha2-containing GABA(A) receptors in mediating PTZ and MES anticonvulsant activity but also suggest that efficacy at more than one subtype is required and that these subtypes act synergistically.


Subject(s)
Anticonvulsants/pharmacology , Benzodiazepines/pharmacology , Receptors, GABA-A/physiology , Seizures/prevention & control , Animals , Binding Sites , Convulsants , Diazepam/pharmacology , Electroshock , GABA-A Receptor Agonists , Ligands , Mice , Mice, Mutant Strains , Mice, Transgenic , Pentylenetetrazole , Point Mutation , Protein Subunits/agonists , Protein Subunits/genetics , Protein Subunits/physiology , Pyridines/pharmacology , Receptors, GABA-A/genetics , Seizures/etiology , Zolpidem
3.
Mol Cell Neurosci ; 33(1): 47-56, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16870468

ABSTRACT

Selective antagonism of N-methyl-d-aspartate (NMDA) 2B subunit containing receptors has been suggested to have potential therapeutic application for multiple CNS disorders. The amino terminal NR2B residues 1 to 282 were found to be both necessary and sufficient for the binding and function of highly NR2B subunit specific antagonists like ifenprodil and CP-101,606. Using a genetic approach in mice, we successfully replaced the murine NR2B gene function by "knocking-in" (KI) a chimeric human NR2A/B cDNA containing the minimal domain abolishing ifenprodil binding into the endogenous NR2B locus. Patch-clamp recording from hippocampal cultures of the NR2B KI mice demonstrated that their NMDA receptors have reduced sensitivity to both ifenprodil and CP-101,606, as predicted, but also have a lower affinity for glycine. The NR2B KI mice exhibited normal locomotor activity making this ifenprodil-insensitive mouse model a valuable tool to test the specificity of NR2B selective antagonists in vivo.


Subject(s)
Excitatory Amino Acid Antagonists/metabolism , Piperidines/metabolism , Protein Subunits/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cells, Cultured , Dizocilpine Maleate/metabolism , Excitatory Amino Acid Agonists/metabolism , Female , Gene Targeting , Hippocampus/cytology , Humans , Male , Mice , Mice, Transgenic , Motor Activity/physiology , N-Methylaspartate/metabolism , Neurons/cytology , Neurons/metabolism , Patch-Clamp Techniques , Protein Subunits/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Xenopus laevis
4.
J Neurosci ; 25(46): 10682-8, 2005 Nov 16.
Article in English | MEDLINE | ID: mdl-16291941

ABSTRACT

The GABA(A) receptor subtypes responsible for the anxiolytic effects of nonselective benzodiazepines (BZs) such as chlordiazepoxide (CDP) and diazepam remain controversial. Hence, molecular genetic data suggest that alpha2-rather than alpha3-containing GABA(A) receptors are responsible for the anxiolytic effects of diazepam, whereas the anxiogenic effects of an alpha3-selective inverse agonist suggest that an agonist selective for this subtype should be anxiolytic. We have extended this latter pharmacological approach to identify a compound, 4,2'-difluoro-5'-[8-fluoro-7-(1-hydroxy-1-methylethyl)imidazo[1,2-á]pyridin-3-yl]biphenyl-2-carbonitrile (TP003), that is an alpha3 subtype selective agonist that produced a robust anxiolytic-like effect in both rodent and non-human primate behavioral models of anxiety. Moreover, in mice containing a point mutation that renders alpha2-containing receptors BZ insensitive (alpha2H101R mice), TP003 as well as the nonselective agonist CDP retained efficacy in a stress-induced hyperthermia model. Together, these data show that potentiation of alpha3-containing GABA(A) receptors is sufficient to produce the anxiolytic effects of BZs and that alpha2 potentiation may not be necessary.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Benzodiazepines/therapeutic use , Protein Subunits/physiology , Receptors, GABA-A/physiology , Animals , Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Anxiety/metabolism , Benzodiazepines/pharmacology , Dose-Response Relationship, Drug , GABA-A Receptor Agonists , Humans , Male , Mice , Mice, Transgenic , Protein Binding/physiology , Rats , Rats, Sprague-Dawley , Saimiri
5.
Behav Brain Res ; 163(2): 257-64, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16046005

ABSTRACT

Schizophrenia is a chronic and debilitating disease which is thought to arise from a neuro-developmental disorder. Both the stable tubule-only polypeptide (STOP) protein and the N-methyl-D-aspartate (NMDA) NR1 subunit are involved in neuronal development and physiology. It has therefore been postulated that transgenic mice lacking either the STOP or the NMDAR1 gene would show a 'schizophrenic-like' phenotype. Here, STOP knockout and NMDA NR1 hypomorphic mice were assessed in a behavioural measure that can be used to detect schizophrenic-like phenotypes: a change in sensorimotor gating, measured through prepulse inhibition (PPI). STOP knockout mice were further assessed in another measure of 'schizophrenic-like behaviour': hyperlocomotion. The PPI deficit exhibited by both the STOP knockout and NMDA knockdown mice could not be reversed by acute treatment with the atyptical antipsychotic, clozapine (1 mg/kg, i.p.) but the hyperlocomotion shown by the STOP knockout mice was reversed with the same acute dose of clozapine.


Subject(s)
Gait Disorders, Neurologic/genetics , Gait Disorders, Neurologic/physiopathology , Microtubule-Associated Proteins/deficiency , Receptors, N-Methyl-D-Aspartate/deficiency , Somatosensory Cortex/physiopathology , Acoustic Stimulation/methods , Animals , Antipsychotic Agents/administration & dosage , Body Temperature/drug effects , Body Temperature/genetics , Body Weight/drug effects , Body Weight/genetics , Clozapine/administration & dosage , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Drug Interactions , Enzyme Inhibitors/pharmacology , Gait Disorders, Neurologic/drug therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Motor Activity/genetics , Neural Inhibition/drug effects , Neural Inhibition/genetics , Phencyclidine/pharmacology , Reflex, Acoustic/drug effects , Reflex, Acoustic/genetics , Rotarod Performance Test/methods , Somatosensory Cortex/drug effects , Swimming , Time Factors
6.
Neuroreport ; 15(10): 1653-6, 2004 Jul 19.
Article in English | MEDLINE | ID: mdl-15232301

ABSTRACT

The i.v. agent etomidate exerts its anaesthetic actions through potentiation of gamma-aminobutyric acid-A receptors containing beta2 and beta3 subunits. It was recently shown that the beta2 subunit contributes to the sedative properties of etomidate, whereas the beta3 subunit is responsible for its anaesthetic properties. However, these studies evaluated anaesthetic effects in point mutation mice in which the effect of etomidate was decreased, but not abolished, at the beta2 subunit. Here we have used beta2 knockout mice to completely remove any contribution of the beta2 subunit to the effects of etomidate. Etomidate was equally anaesthetic in wildtype and knockout mice, thus further confirming that efficacy at the beta3 subunit only is sufficient to induce general anaesthesia.


Subject(s)
Anesthesia , Anesthetics, Intravenous , Etomidate , Protein Subunits/physiology , Receptors, GABA-A/physiology , Animals , Behavior, Animal , Dose-Response Relationship, Drug , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Protein Subunits/genetics , Receptors, GABA-A/genetics , Recovery of Function/drug effects , Reflex/drug effects , Reflex/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...