Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nutrients ; 16(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38474762

ABSTRACT

INTRODUCTION: chronic low-grade inflammation, or inflammaging, emerges as a crucial element in the aging process and is associated with cardiovascular and neurological diseases, sarcopenia, and malnutrition. Evidence suggests that omega-3 fatty acids present a potential therapeutic agent in the prevention and treatment of inflammatory diseases, mitigating oxidative stress, and improving muscle mass, attributes that are particularly relevant in the context of aging. The objective of the present study was to evaluate the effectiveness of supplementation with omega-3 fish oil in improving the immune response and oxidative stress in knockout mice for interleukin IL-10 (IL-10-/-). MATERIAL AND METHODS: female C57BL/6 wild-type (WT) and interleukin IL-10 knockout (IL-10-/-) mice were fed during 90 days with a standard diet (control groups), or they were fed/supplemented with 10% of the omega-3 polyunsaturated fatty acid diet (omega-3 groups). Muscle, liver, intestinal, and mesenteric lymph node tissue were collected for analysis. RESULTS: the IL-10-/-+O3 group showed greater weight gain compared to the WT+O3 (p = 0.001) group. The IL-10-/-+O3 group exhibited a higher frequency of regulatory T cells than the IL-10-/- group (p = 0.001). It was found that animals in the IL-10-/-+O3 group had lower levels of steatosis when compared to the IL-10-/- group (p = 0.017). There was even greater vitamin E activity in the WT group compared to the IL-10-/-+O3 group (p = 0.001) and WT+O3 compared to IL-10-/-+O3 (p = 0.002), and when analyzing the marker of oxidative stress, MDA, an increase in lipid peroxidation was found in the IL-10-/-+O3 group when compared to the IL-10-/- group (p = 0.03). Muscle tissue histology showed decreased muscle fibers in the IL-10-/-+O3, IL-10-/-, and WT+O3 groups. CONCLUSION: the findings show a decrease in inflammation, an increase in oxidative stress markers, and a decrease in antioxidant markers in the IL-10-/-+O3 group, suggesting that supplementation with omega-3 fish oil might be a potential intervention for inflammaging that characterizes the aging process and age-related diseases.


Subject(s)
Fatty Acids, Omega-3 , Female , Mice , Animals , Fatty Acids, Omega-3/pharmacology , Antioxidants/pharmacology , T-Lymphocytes, Regulatory/metabolism , Mice, Knockout , Interleukin-10/metabolism , Mice, Inbred C57BL , Fish Oils/pharmacology , Oxidative Stress , Dietary Supplements , Liver/metabolism , Inflammation/metabolism
2.
J Allergy Clin Immunol Glob ; 2(1): 14-22, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37780109

ABSTRACT

Eosinophilic, noneosinophilic, or mixed granulocytic inflammations are the hallmarks of asthma heterogeneity. Depending on the priming of lung immune and structural cells, subjects with asthma might generate immune responses that are TH2-prone or TH17-prone immune response. Bacterial infections caused by Haemophilus, Moraxella, or Streptococcus spp. induce the secretion of IL-17, which in turn recruit neutrophils into the airways. Clinical studies and experimental models of asthma indicated that neutrophil infiltration induces a specific phenotype of asthma, characterized by an impaired response to corticosteroid treatment. The understanding of pathways that regulate the TH17-neutrophils axis is critical to delineate and develop host-directed therapies that might control asthma and its exacerbation episodes that course with infectious comorbidities. In this review, we outline clinical and experimental studies on the role of airway epithelial cells, S100A9, and high mobility group box 1, which act in concert with the IL-17-neutrophil axis activated by bacterial infections, and are related with asthma that is difficult to treat. Furthermore, we report critically our view in the light of these findings in an attempt to stimulate further investigations and development of immunotherapies for the control of severe asthma.

3.
Int J Mol Sci ; 24(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445595

ABSTRACT

There is evidence that IL-22 and IL-17 participate in the pathogenesis of allergic asthma. To investigate the role of IL-22, we used IL-22 deficient mice (IL-22 KO) sensitized and challenged with ovalbumin (OVA) and compared with wild type (WT) animals exposed to OVA. IL-22 KO animals exposed to OVA showed a decreased number and frequency of eosinophils, IL-5 and IL-13 in the airways, reduced mucus production and pulmonary inflammation. In addition, IL-22 KO animals exhibited a decreased percentage and number of lung CD11c+CD11b+ cells and increased apoptosis of eosinophils. Th17 cell transfer generated from IL-22 KO to animals previously sensitized and challenged with OVA caused a reduction in eosinophil frequency and number in the airways compared to animals transferred with Th17 cells generated from WT mice. Therefore, IL-22 is deleterious with concomitant secretion of IL-17. Our findings show a pro-inflammatory role for IL-22, confirmed in a model of allergen-free and allergen-specific immunotherapy. Moreover, during the comorbidity asthma and pneumonia that induces neutrophil inflammation, IL-22 was not detrimental. Our results show that targeting IL-22 would negatively affect the survival of eosinophils, reduce the expansion or migration of CD11c+CD11b+ cells, and negatively regulate allergic asthma.


Subject(s)
Asthma , Pneumonia , Mice , Animals , Interleukin-17/genetics , Asthma/pathology , Lung/pathology , Eosinophils , Pneumonia/pathology , Allergens , Comorbidity , Ovalbumin , Disease Models, Animal , Bronchoalveolar Lavage Fluid , Mice, Inbred BALB C
4.
Toxicon ; 230: 107171, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37211059

ABSTRACT

There are several scorpion species of medical relevance around the world. Some of them are well characterized by their toxins and clinical outcomes. Brazilian Amazon has a great amount of these arthropods that have an impact in the scorpionism events specifically in this region of Brazil. Recently, several studies pointed out the immune system activation during scorpion envenouming as an important facet of scorpionism, inducing a sepsis-like state that culminates in clinical severity and death. In this work, we characterized the macrophage response of three species of clinical relevance in Brazilian Amazon: Tityus silvestris, T. metuendus and T. obscurus and one specie with no toxic effects to humans, Brotheas amazonicus. All the four species analyzed were able to induce pro- and anti-inflammatory cytokine production in a J774.1 murine macrophage model. This activation was dependent on TLR2/TLR4/MyD88 activation and abolished by TLRs antagonists. These results suggest that the venoms of the four species analyzed were able to induce macrophage response in agreement to the well-established immune activation by T. serrulatus venom. Our findings provide new insights into the clinical repercussions of scorpionism of uncharacterized species and point to new biotechnological applications of these venoms and possible supportive therapies in scorpionism.


Subject(s)
Scorpion Stings , Scorpion Venoms , Humans , Mice , Animals , Brazil , Scorpion Venoms/toxicity , Scorpions , Macrophages
5.
PLoS One ; 17(12): e0270071, 2022.
Article in English | MEDLINE | ID: mdl-36520787

ABSTRACT

Different levels of resistance against Rhizopus oryzae infection have been observed between inbred (BALB/c) and outbred (Swiss) mice and are associated with the genetic background of each mouse strain. Considering that macrophages play an important role in host resistance to Rhizopus species, we used different infectious outcomes observed in experimental mucormycosis to identify the most efficient macrophage response pattern against R. oryzae in vitro and in vivo. For this, we compared BALB/c and Swiss macrophage activity before and after intravenous or intratracheal R. oryzae infections. The production of hydrogen peroxide (H2O2) and nitric oxide (NO) was determined in cultures of peritoneal (PMΦ) or alveolar macrophages (AMΦ) challenged with heat-killed spores of R. oryzae. The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10) were measured to confirm our findings. Naïve PMΦ from female BALB/c mice showed increased production of H2O2, TNF-α, and IL-10 in the presence of heat-killed spores of R. oryzae. Naïve PMΦ from female Swiss mice were less responsive. Naïve AMΦ from the two strains of female mice were less reactive to heat-killed spores of R. oryzae than PMΦ. After 30 days of R. oryzae intravenous infection, lower fungal load in spleen from BALB/c mice was accompanied by higher production of H2O2 by PMΦ compared with Swiss mice. In contrast, AMΦ from BALB/c mice showed higher production of NO, TNF-α, and IL-10 after 7 days of intratracheal infection. The collective findings reveal that, independent of the female mouse strain, PMΦ is more reactive against R. oryzae upon first contact than AMΦ. In addition, increased PMΦ production of H2O2 at the end of disseminated infection is accompanied by better fungal clearance in resistant (BALB/c) mice. Our findings further the understanding of the parasite-host relationship in mucormycosis.


Subject(s)
Interleukin-10 , Mucormycosis , Mice , Female , Animals , Oxygen , Nitrogen , Tumor Necrosis Factor-alpha , Hydrogen Peroxide , Macrophages , Mice, Inbred BALB C , Macrophages, Peritoneal
6.
Front Immunol ; 13: 903903, 2022.
Article in English | MEDLINE | ID: mdl-35720401

ABSTRACT

In the present study, the levels of serum and airway soluble chemokines, pro-inflammatory/regulatory cytokines, and growth factors were quantified in critically ill COVID-19 patients (total n=286) at distinct time points (D0, D2-6, D7, D8-13 and D>14-36) upon Intensive Care Unit (ICU) admission. Augmented levels of soluble mediators were observed in serum from COVID-19 patients who progress to death. An opposite profile was observed in tracheal aspirate samples, indicating that systemic and airway microenvironment diverge in their inflammatory milieu. While a bimodal distribution was observed in the serum samples, a unimodal peak around D7 was found for most soluble mediators in tracheal aspirate samples. Systems biology tools further demonstrated that COVID-19 display distinct eccentric soluble mediator networks as compared to controls, with opposite profiles in serum and tracheal aspirates. Regardless the systemic-compartmentalized microenvironment, networks from patients progressing to death were linked to a pro-inflammatory/growth factor-rich, highly integrated center. Conversely, patients evolving to discharge exhibited networks of weak central architecture, with lower number of neighborhood connections and clusters of pro-inflammatory and regulatory cytokines. All in all, this investigation with robust sample size landed a comprehensive snapshot of the systemic and local divergencies composed of distinct immune responses driven by SARS-CoV-2 early on severe COVID-19.


Subject(s)
COVID-19 , Critical Illness , Cytokines/metabolism , Humans , Kinetics , SARS-CoV-2
7.
J Fungi (Basel) ; 8(4)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35448617

ABSTRACT

Candidiasis may affect the central nervous system (CNS), and although Candida albicans is predominant, non-albicans Candida species can also be associated with CNS infections. Some studies have suggested that Candida infections could increase the odds of multiple sclerosis (MS) development. In this context, we investigated whether systemic infection by non-albicans Candida species would affect, clinically or immunologically, the severity of experimental autoimmune encephalomyelitis (EAE), which is an animal model used to study MS. For this, a strain of C. glabrata, C. krusei, and C. parapsilosis was selected and characterized using different in vitro and in vivo models. In these analysis, all the strains exhibited the ability to form biofilms, produce proteolytic enzymes, and cause systemic infections in Galleria mellonella, with C. glabrata being the most virulent species. Next, C57BL/6 mice were infected with strains of C. glabrata, C. krusei, or C. parapsilosis, and 3 days later were immunized with myelin oligodendrocyte glycoprotein to develop EAE. Mice from EAE groups previously infected with C. glabrata and C. krusei developed more severe and more prevalent paralysis, while mice from the EAE group infected with C. parapsilosis developed a disease comparable to non-infected EAE mice. Disease aggravation by C. glabrata and C. krusei strains was concomitant to increased IL-17 and IFN-γ production by splenic cells stimulated with fungi-derived antigens and with increased percentage of T lymphocytes and myeloid cells in the CNS. Analysis of interaction with BV-2 microglial cell line also revealed differences among these strains, in which C. krusei was the strongest activator of microglia concerning the expression of MHC II and CD40 and pro-inflammatory cytokine production. Altogether, these results indicated that the three non-albicans Candida strains were similarly able to reach the CNS but distinct in terms of their effect over EAE development. Whereas C. glabrata and C. Krusei aggravated the development of EAE, C. parapsilosis did not affect its severity. Disease worsening was partially associated to virulence factors in C. glabrata and to a strong activation of microglia in C. krusei infection. In conclusion, systemic infections by non-albicans Candida strains exerted influence on the experimental autoimmune encephalomyelitis in both immunological and clinical aspects, emphasizing their possible relevance in MS development.

8.
J Interferon Cytokine Res ; 42(4): 153-160, 2022 04.
Article in English | MEDLINE | ID: mdl-35384725

ABSTRACT

Rapamycin is an immunomodulatory drug that has been evaluated in preclinical and clinical trials as a disease-modifying therapy for multiple sclerosis (MS). In this study, we evaluated the in vitro effect of rapamycin on immune cells pivotally involved in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), which is an animal model to study MS. Splenocytes and central nervous system (CNS)-mononuclear cells obtained from EAE mice were stimulated with a myelin oligodendrocyte glycoprotein peptide, whereas the microglial BV-2 cell line was activated with LPS. The 3 immune cell types were simultaneously treated with rapamycin, incubated, and then used to analyze cytokines, transcription factors, and activation markers. Rapamycin reduced IL-17 production, TBX21, and RORc expression by splenic and CNS cell cultures. IFN-γ and TNF-α production were also decreased in CNS cultures. This treatment also decreased TNF-α, IL-6, MHC II, CD40, and CD86 expression by BV-2 cells. These results indicated that in vivo immunomodulatory activity of rapamycin in MS and EAE was, in many aspects, reproduced by in vitro assays done with cells derived from the spleen and the CNS of EAE mice. This procedure could constitute a screening strategy for choosing drugs with therapeutic potential for MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Sirolimus/metabolism , Sirolimus/pharmacology , Sirolimus/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
9.
Neural Regen Res ; 17(9): 1945-1954, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35142671

ABSTRACT

Multiple sclerosis is an autoimmune treatable but not curable disease. There are a multiplicity of medications for multiple sclerosis therapy, including a class entitled disease-modifying drugs that are mainly indicated to reduce the number and severity of disease relapses. Not all patients respond well to these therapies, and minor to severe adverse effects have been reported. Vitamin D, called sunshine vitamin, is being studied as a possible light at the end of the tunnel. In this review, we recapitulated the similar immunopathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis, the immunomodulatory and neuroprotective potential of vitamin D and the state-of-art concerning its supplementation to multiple sclerosis patients. Finally, based on our and other groups' experimental findings, we analyzed the need to consider the relevance of the route and the different time-point administration aspects for a more rational indication of this vitamin to multiple sclerosis patients.

10.
Mycopathologia ; 187(1): 15-30, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34716549

ABSTRACT

We established three immunocompetent murine models of pulmonary mucormycosis to determine the involvement of the adaptive immune response in host resistance in pulmonary mucormycosis, a rapidly fatal disease caused mainly by Rhizopus spp. Immunocompetent inbred (C57BL/6, BALB/c) and outbred (Swiss) strains of mice were inoculated with R. oryzae via the intratracheal route. The inoculation resulted in a disseminated infection that spread to the brain, spleen, kidney, and liver. After 7 and 30 days of R. oryzae infection, BALB/c mice showed the lowest fungal load and highest production of IFN-γ and IL-2 by splenocytes. Swiss mice showed a higher fungal load 30 days p.i. and was associated with a weak development of the Th-1 profile. To confirm our findings, R. oryzae-infected IFN-γ-/- mice were evaluated after 60 days, where the mice still showed viable fungi in the lungs. This study showed, for the first time, that pulmonary mucormycosis in three widely used mouse strains resulted in an acute fungal dissemination without immunosuppression whose outcome varies according to the genetic background of the mice. We also identified the partial role of IFN-γ in the efficient elimination of R. oryzae during pulmonary infection.


Subject(s)
Mucormycosis , Animals , Lung , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Rhizopus
11.
Viruses ; 13(12)2021 12 04.
Article in English | MEDLINE | ID: mdl-34960708

ABSTRACT

The persistent circulation of SARS-CoV-2 represents an ongoing global threat due to the emergence of new viral variants that can sometimes evade the immune system of previously exposed or vaccinated individuals. We conducted a follow-up study of adult individuals that had received an inactivated SARS-CoV-2 vaccine, evaluating antibody production and neutralizing activity over a period of 6 months. In addition, we performed mice immunization with inactivated SARS-CoV-2, and evaluated the immune response and pathological outcomes against Gamma and Zeta variant infection. Vaccinated individuals produced high levels of antibodies with robust neutralizing activity, which was significantly reduced against Gamma and Zeta variants. Production of IgG anti-S antibodies and neutralizing activity robustly reduced after 6 months of vaccination. Immunized mice demonstrated cellular response against Gamma and Zeta variants, and after viral infection, reduced viral loads, IL-6 expression, and histopathological outcome in the lungs. TNF levels were unchanged in immunized or not immunized mice after infection with the Gamma variant. Furthermore, serum neutralization activity rapidly increases after infection with the Gamma and Zeta variants. Our data suggest that immunization with inactivated WT SARS-CoV-2 induces a promptly responsive cross-reactive immunity response against the Gamma and Zeta variants, reducing COVID-19 pathological outcomes.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Inactivated/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cross Protection , Cytokines/metabolism , Follow-Up Studies , Humans , Immunization , Lung/metabolism , Lung/pathology , Mice , Vaccines, Inactivated/administration & dosage , Viral Load
12.
Pharmaceutics ; 13(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34834178

ABSTRACT

Propolis is a natural product produced by bees that is primarily used in complementary and alternative medicine and has anti-inflammatory, antibacterial, antiviral, and antitumoral biological properties. Some studies have reported the beneficial effects of propolis in models of allergic asthma. In a previous study, our group showed that green propolis treatment reduced airway inflammation and mucus secretion in an ovalbumin (OVA)-induced asthma model and resulted in increased regulatory T cells (Treg) and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) frequencies in the lungs, two leukocyte populations that have immunosuppressive functions. In this study, we evaluated the anti-inflammatory effects of artepillin C (ArtC), the major compound of green propolis, in the context of allergic airway inflammation. Our results show that ArtC induces in vitro differentiation of Treg cells and monocytic MDSC (M-MDSC). Furthermore, in an OVA-induced asthma model, ArtC treatment reduced pulmonary inflammation, eosinophil influx to the airways, mucus and IL-5 secretion along with increased frequency of M-MDSC, but not Treg cells, in the lungs. Using an adoptive transfer model, we confirmed that the effect of ArtC in the reduction in airway inflammation was dependent on M-MDSC. Altogether, our data show that ArtC exhibits an anti-inflammatory effect and might be an adjuvant therapy for allergic asthma.

13.
J Fungi (Basel) ; 7(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34575795

ABSTRACT

Environmental factors, including infections, are strongly associated with the pathogenesis of multiple sclerosis (MS), which is an autoimmune and demyelinating disease of the central nervous system (CNS). Although classically associated with bacterial and viral agents, fungal species have also been suspected to affect the course of the disease. Candida tropicalis is an opportunistic fungus that affects immunocompromised individuals and is also able to spread to vital organs. As C. tropicalis has been increasingly isolated from systemic infections, we aimed to evaluate the effect of this fungus on experimental autoimmune encephalomyelitis (EAE), a murine model to study MS. For this, EAE was induced in female C57BL/6 mice 3 days after infection with 106 viable C. tropicalis yeasts. The infection decreased EAE prevalence and severity, confirmed by the less inflammatory infiltrate and less demyelization in the lumbar spinal cord. Despite this, C. tropicalis infection associated with EAE results in the death of some animals and increased urea and creatinine serum levels. The kidneys of EAE-infected mice showed higher fungal load associated with increased leukocyte infiltration (CD45+ cells) and higher expression of T-box transcription factor (Tbx21) and forkhead box P3 (Foxp3). Altogether, our results demonstrate that although C. tropicalis infection reduces the prevalence and severity of EAE, partially due to the sequestration of leukocytes by the inflamed renal tissue, this effect is associated with a poor disease outcome.

14.
Cancers (Basel) ; 13(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34503205

ABSTRACT

Head and neck squamous cell carcinoma remains challenging to treat with no improvement in survival rates over the past 50 years. Thus, there is an urgent need to discover more reliable therapeutic targets and biomarkers for HNSCC. Matriptase, a type-II transmembrane serine protease, induces malignant transformation in epithelial stem cells through proteolytic activation of pro-HGF and PAR-2, triggering PI3K-AKT-mTOR and NFKB signaling. The serine protease inhibitor lympho-epithelial Kazal-type-related inhibitor (LEKTI) inhibits the matriptase-driven proteolytic pathway, directly blocking kallikreins in epithelial differentiation. Hence, we hypothesized LEKTI could inhibit matriptase-dependent squamous cell carcinogenesis, thus implicating kallikreins in this process. Double-transgenic mice with simultaneous expression of matriptase and LEKTI under the keratin-5 promoter showed a prominent rescue of K5-Matriptase+/0 premalignant phenotype. Notably, in DMBA-induced SCC, heterotopic co-expression of LEKTI and matriptase delayed matriptase-driven tumor incidence and progression. Co-expression of LEKTI reverted altered Kallikrein-5 expression observed in the skin of K5-Matriptase+/0 mice, indicating that matriptase-dependent proteolytic pathway inhibition by LEKTI occurs through kallikreins. Moreover, we showed that Kallikrein-5 is necessary for PAR-2-mediated IL-8 release, YAP1-TAZ/TEAD activation, and matriptase-mediated oral squamous cell carcinoma migration. Collectively, our data identify a third signaling pathway for matriptase-dependent carcinogenesis in vivo. These findings are critical for the identification of more reliable biomarkers and effective therapeutic targets in Head and Neck cancer.

15.
Cells ; 10(7)2021 07 08.
Article in English | MEDLINE | ID: mdl-34359902

ABSTRACT

The microbiota of the gut-lung axis affects local and far-reaching immune responses and might also trigger chronic and inflammatory diseases. We hypothesized that gut dysbiosis induced by obesity, which coexists in countries with a high tuberculosis burden, aggravates the host susceptibility and the pulmonary damage tolerance. To assess our hypothesis, we used a model of high-fat diet (HFD)-induced obesity, followed by infection of C57BL/6 mice with Mycobacterium tuberculosis. We showed that obesity increased the susceptibility, the pulmonary inflammation and IFN-γ levels in M. tuberculosis-infected mice. During the comorbidity obesity and tuberculosis, there is an increase of Bacteroidetes and Firmicutes in the lungs, and an increase of Firmicutes and butyrate in the feces. Depletion of gut microbiota by antibiotic treatment in the obese infected mice reduced the frequencies of CD4+IFN-γ+IL-17- cells and IFN-γ levels in the lungs, associated with an increase of Lactobacillus. Our findings reinforce the role of the gut-lung axis in chronic infections and suggest that the gut microbiota modulation may be a potential host-directed therapy as an adjuvant to treat TB in the context of IFN-γ-mediated immunopathology.


Subject(s)
Dysbiosis/etiology , Dysbiosis/microbiology , Interferon-gamma/biosynthesis , Obesity/complications , Obesity/microbiology , Pneumonia/microbiology , Tuberculosis/complications , Adaptive Immunity , Animals , Bacterial Load , Disease Susceptibility , Dysbiosis/immunology , Fecal Microbiota Transplantation , Feces/microbiology , Female , Leukocytes/metabolism , Lung/immunology , Lung/microbiology , Lung/pathology , Mice, Inbred C57BL , Microbiota , Obesity/immunology , Pneumonia/immunology , Tuberculosis/immunology
16.
Int J Mol Sci ; 22(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33671896

ABSTRACT

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS). MS and its animal model called experimental autoimmune encephalomyelitis (EAE) immunopathogenesis involve a plethora of immune cells whose activation releases a variety of proinflammatory mediators and free radicals. Vitamin D3 (VitD) is endowed with immunomodulatory and antioxidant properties that we demonstrated to control EAE development. However, this protective effect triggered hypercalcemia. As such, we compared the therapeutic potential of VitD and paricalcitol (Pari), which is a non-hypercalcemic vitamin D analog, to control EAE. From the seventh day on after EAE induction, mice were injected with VitD or Pari every other day. VitD, but not Pari, displayed downmodulatory ability being able to reduce the recruitment of inflammatory cells, the mRNA expression of inflammatory parameters, and demyelination at the CNS. Lower production of proinflammatory cytokines by lymph node-derived cells and IL-17 by gut explants, and reduced intestinal inflammation were detected in the EAE/VitD group compared to the EAE untreated or Pari groups. Dendritic cells (DCs) differentiated in the presence of VitD developed a more tolerogenic phenotype than in the presence of Pari. These findings suggest that VitD, but not Pari, has the potential to be used as a preventive therapy to control MS severity.


Subject(s)
Antioxidants/administration & dosage , Cholecalciferol/administration & dosage , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Ergocalciferols/administration & dosage , Immunologic Factors/administration & dosage , Post-Exposure Prophylaxis/methods , Animals , Antioxidants/pharmacology , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Cholecalciferol/pharmacology , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/immunology , Ergocalciferols/pharmacology , Female , Immunologic Factors/pharmacology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Multiple Sclerosis/prevention & control , Severity of Illness Index , Signal Transduction/drug effects , Treatment Outcome
17.
Food Res Int ; 139: 109964, 2021 01.
Article in English | MEDLINE | ID: mdl-33509514

ABSTRACT

Hepatocellular carcinoma (HCC) arising from fibrosis/cirrhosis is the most common type of primary liver cancer. Conversely, a higher intake of fruits and vegetables might play a protective role in HCC risk. Recently, Myrtaceae family tropical fruits have raised great interest due to the high levels of anthocyanins especially in their peels, which are usually discarded upon consumption. Anthocyanins are antioxidant pigments known to have beneficial effects in vivo/in vitro cancer bioassays. Thus, we evaluated whether dietary Myrciaria jaboticaba, Syzygium cumini, and Syzygium malaccense fruit peel powders reduce fibrosis and hepatocarcinogenesis in mice. Female C3H/HeJ mice were submitted to the model of diethylnitrosamine/carbon tetrachloride-induced liver fibrosis and carcinogenesis. Concomitantly, mice received a basal diet containing 2% of M. jaboticaba, S. cumini, or S. malaccense fruit peel powders, obtained by convective drying, for 10 weeks. M. jaboticaba peel powder showed the highest levels of total anthocyanins, while S. cumini peel powder displayed the greatest diversity of these pigments. All Myrtaceae family peel powders reduced the serum levels of the liver injury marker alanine aminotransferase. M. jaboticaba peel feeding reduced the incidence of liver preneoplastic foci, hepatocyte proliferation (Ki-67), and the protein levels of hepato-mitogen tumor necrosis factor-alpha (TNF-α). M. jaboticaba peel feeding also diminished liver lipid peroxidation and increased total glutathione levels. S. cumini peel feeding reduced hepatic collagen, lipid peroxidation, and TNF-α levels while increased catalase activity. Although S. malaccense peel powder, which displayed the lowest anthocyanin levels, decreased oxidative stress, and cytokine levels, no effects were observed on liver fibrosis or preneoplastic lesion outcomes. Findings indicate a protective effect of anthocyanin-rich M. jaboticaba and S. cumini peel powder feeding on preneoplastic lesion development and fibrosis, respectively. Results indicate that differential biological responses may be attributed to distinct anthocyanin profiles and levels, assigning a functional/market value to the underutilized peel fraction.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Myrtaceae , Animals , Anthocyanins , Carcinogenesis , Female , Fruit , Liver Cirrhosis/chemically induced , Liver Cirrhosis/prevention & control , Mice , Mice, Inbred C3H
18.
Sci Rep ; 10(1): 22190, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335128

ABSTRACT

Multiple sclerosis is an autoimmune disease that affects the myelinated central nervous system (CNS) neurons and triggers physical and cognitive disabilities. Conventional therapy is based on disease-modifying drugs that control disease severity but can also be deleterious. Complementary medicines have been adopted and evidence indicates that yeast supplements can improve symptoms mainly by modulating the immune response. In this investigation, we evaluated the therapeutic potential of Saccharomyces cerevisiae and its selenized derivative (Selemax) in experimental autoimmune encephalomyelitis (EAE). Female C57BL/6 mice submitted to EAE induction were orally supplemented with these yeasts by gavage from day 0 to day 14 after EAE induction. Both supplements determined significant reduction in clinical signs concomitantly with diminished Th1 immune response in CNS, increased proportion of Foxp3+ lymphocytes in inguinal and mesenteric lymph nodes and increased microbiota diversity. However, Selemax was more effective clinically and immunologically; it reduced disease prevalence more sharply, increased the proportion of CD103+ dendritic cells expressing high levels of PD-L1 in mesenteric lymph nodes and reduced the intestinal inflammatory process more strongly than S. cerevisiae. These results suggest a clear gut-brain axis modulation by selenized S. cerevisiae and suggest their inclusion in clinical trials.


Subject(s)
Dietary Supplements , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Immunomodulation , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Saccharomyces cerevisiae/immunology , Animals , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology , Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental/pathology , Immune Tolerance , Lymphocyte Count , Mice , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
19.
Front Immunol ; 11: 571844, 2020.
Article in English | MEDLINE | ID: mdl-33193354

ABSTRACT

Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS). The persistent inflammation is being mainly attributed to local oxidative stress and inflammasome activation implicated in the ensuing demyelination and axonal damage. Since new control measures remain necessary, we evaluated the preventive and therapeutic potential of a beta-selenium-lactic acid derivative (LAD-ßSe), which is a source of organic selenium under development, to control experimental autoimmune encephalomyelitis (EAE) that is an animal model for MS. Two EAE murine models: C57BL/6 and SJL/J immunized with myelin oligodendrocyte glycoprotein and proteolipid protein, respectively, and a model of neurodegeneration induced by LPS in male C57BL/6 mice were used. The preventive potential of LAD-ßSe was initially tested in C57BL/6 mice, the chronic MS model, by three different protocols that were started 14 days before or 1 or 7 days after EAE induction and were extended until the acute disease phase. These three procedures were denominated preventive therapy -14 days, 1 day, and 7 days, respectively. LAD-ßSe administration significantly controlled clinical EAE development without triggering overt hepatic and renal dysfunction. In addition of a tolerogenic profile in dendritic cells from the mesenteric lymph nodes, LAD-ßSe also downregulated cell amount, activation status of macrophages and microglia, NLRP3 (NOD-like receptors) inflammasome activation and other pro-inflammatory parameters in the CNS. The high Se levels found in the CNS suggested that the product crossed the blood-brain barrier having a possible local effect. The hypothesis that LAD-ßSe was acting locally was then confirmed by using the LPS-induced neurodegeneration model that also displayed Se accumulation and downmodulation of pro-inflammatory parameters in the CNS. Remarkably, therapy with LAD-ßSe soon after the first remitting episode in SJL/J mice, also significantly downmodulated local inflammation and clinical disease severity. This study indicates that LAD-ßSe, and possibly other derivatives containing Se, are able to reach the CNS and have the potential to be used as preventive and therapeutic measures in distinct clinical forms of MS.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Central Nervous System/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Inflammasomes/metabolism , Microglia/pathology , Multiple Sclerosis/drug therapy , Neurogenic Inflammation/drug therapy , Selenium/therapeutic use , Animals , Central Nervous System/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Lactic Acid/chemistry , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neurogenic Inflammation/immunology , Selenium/chemistry
20.
J Leukoc Biol ; 108(4): 1139-1156, 2020 10.
Article in English | MEDLINE | ID: mdl-32620048

ABSTRACT

The innate response plays a crucial role in the protection against tuberculosis development. Moreover, the initial steps that drive the host-pathogen interaction following Mycobacterium tuberculosis infection are critical for the development of adaptive immune response. As alveolar Mϕs, airway epithelial cells, and dendritic cells can sense the presence of M. tuberculosis and are the first infected cells. These cells secrete mediators, which generate inflammatory signals that drive the differentiation and activation of the T lymphocytes necessary to clear the infection. Throughout this review article, we addressed the interaction between epithelial cells and M. tuberculosis, as well as the interaction between dendritic cells and M. tuberculosis. The understanding of the mechanisms that modulate those interactions is critical to have a complete view of the onset of an infection and may be useful for the development of dendritic cell-based vaccine or immunotherapies.


Subject(s)
Adaptive Immunity , Alveolar Epithelial Cells/immunology , Dendritic Cells/immunology , Host-Pathogen Interactions/immunology , Mycobacterium tuberculosis/physiology , Tuberculosis, Pulmonary/immunology , Alveolar Epithelial Cells/pathology , Dendritic Cells/pathology , Humans , Macrophages, Alveolar/immunology , Macrophages, Alveolar/pathology , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...