Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e26908, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38468931

ABSTRACT

Herbicides play a pivotal role in paddy rice cultivation by effectively controlling weeds, thus ensuring optimal resource utilisation and higher crop yields, making them indispensable for efficient rice production systems. However, herbicide applications could be related to potential environmental impacts such as water contamination and harm to non-target species, requiring special attention in their management to ensure the long-term sustainability of rice farming practices. The development and utilisation of robust risk assessment indicators for pesticides are essential tools in evaluating and mitigating potential environmental and human health hazards associated with pesticide use in agricultural practices. The Environmental Potential Risk Indicator for Pesticides (EPRIP) is not suitable for rice paddy cultivation due to its limitations in accurately assessing pesticide risk in this specific agricultural context. This is primarily attributed to the unique hydrological characteristics and ecosystem dynamics of paddy fields, which significantly differ from other agricultural systems. To address this issue and to enhance the accuracy of pesticide risk assessment in rice paddy fields, EPRIP has been improved and validated in two agricultural seasons. A synergistic approach involving field experiments and enhanced EPRIP model simulations was employed to assess the risk associated with the application of two herbicides in Italian paddy rice systems. The observed and model-predicted surface water (SW) concentrations exhibited a close alignment, though an overestimation was observed for groundwater (GW). In general, the estimated Risk Points (1 for SW and 4 for GW) were largely in accord with those derived from the field experiments (1 for SW and 3 for GW), suggesting that the refined EPRIP model holds promise for conducting reliable risk assessments following herbicide applications in such contexts.

2.
Sci Total Environ ; 573: 1010-1020, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27607904

ABSTRACT

Agricultural use of plant protection products can result in exposure of bystanders, residents, operators and workers. Within the European Union (EU) FP7 project BROWSE, a tool based on a set of models and scenarios has been developed, aiming to assess the risk of exposure of humans to these products. In the present version of the tool only a first conservative tier is available for outdoor vapour exposure assessment. In the vapour exposure evaluation, the target concentrations in air at 10m distance from the edge of a treated field are calculated for specific scenarios for each EU regulatory zone. These scenarios have been selected to represent reasonable worst case volatilisation conditions. The exposure assessment is based on a series of weekly applications in a five year period to cover a wide range of meteorological conditions. The volatilisation from the crop is calculated using the PEARL model and this PEARL output provides the emission strength used as input for the short term version of the atmospheric transport model OPS. The combined PEARL-OPS model is tested against measurements from a field experiment. First results of this test show that the mean concentration level was predicted fairly well. However, sometimes the differences between observations and simulations were found to be substantial. Improvements are suggested for the vapour exposure scenarios as well as for further model development. In the current version of the BROWSE tool a simplified procedure is used to assess single and multiple applications. The actual period of application and the time of application during the day are fixed, and the growth stage of the crop cannot be taken into account. Moreover, competing processes such as penetration of the substance into the plant tissue are not considered. The effect of these factors on the target exposure concentrations is discussed.


Subject(s)
Agrochemicals/analysis , Air Pollutants/analysis , Inhalation Exposure/analysis , Models, Theoretical , Occupational Exposure/analysis , Crops, Agricultural/growth & development , European Union , Humans , Residence Characteristics , Volatilization , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...