Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 266: 1-14, 2019 06.
Article in English | MEDLINE | ID: mdl-30930201

ABSTRACT

Exosomes are endocytic origin small-membrane vesicles secreted to the extracellular space by most cell types. Exosomes released from virus infected-cells can mediate the cell-to-cell communication to promote or modulate viral transmission. Dengue virus (DENV) is an arbovirus transmitted by Aedes mosquitoes bite to humans. Interestingly, the role of exosomes during the DENV infection in mammalian cells has already been described. However, little is known about exosomes derived from infected mosquito cells. Thus, the exosomes released from DENV-infected C6/36 cells were isolated, purified and analyzed using an antibody against the tetraspanin CD9 from human that showed cross-reactivity with the homologs to human CD9 found in Aedes albopictus (AalCD9). The exosomes from DENV infected cells were larger than the exosomes secreted from uninfected cells, contained virus-like particles, and they were able to infect naïve C6/36 cells, suggesting that exosomes are playing a role in virus dissemination.


Subject(s)
Dengue Virus/physiology , Exosomes/metabolism , Exosomes/virology , Mosquito Vectors/virology , Aedes , Animals , Cell Line , Dengue/metabolism , Dengue/virology , Dynamic Light Scattering , Exosomes/immunology , Humans , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/immunology , Insect Proteins/metabolism , Microscopy, Confocal , Microscopy, Electron, Transmission , Mosquito Vectors/classification , Mosquito Vectors/genetics , Mosquito Vectors/metabolism , Phylogeny , Tetraspanins/chemistry , Tetraspanins/genetics , Tetraspanins/immunology , Tetraspanins/metabolism , Virus Replication
2.
Exp Cell Res ; 337(2): 226-33, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26231438

ABSTRACT

Invasion of tissues by Entamoeba histolytica is a multistep process that initiates with the adhesion of the parasite to target tissues. The recognition of the non-invasive Entamoeba dispar as a distinct, but closely related protozoan species raised the question as to whether the lack of its pathogenic potential could be related to a weaker adhesion due to limited cytoskeleton restructuring capacity. We here compared the adhesion process of both amebas to fibronectin through scanning, transmission, atomic force, and confocal microscopy. In addition, electrophoretic and western blot assays of actin were also compared. Adhesion of E. histolytica to fibronectin involves a dramatic reorganization of the actin network that results in a tighter contact to and the subsequent focal degradation of the fibronectin matrix. In contrast, E. dispar showed no regions of focal adhesion, the cytoskeleton was poorly reorganized and there was little fibronectin degradation. In addition, atomic force microscopy using topographic, error signal and phase modes revealed clear-cut differences at the site of contact of both amebas with the substrate. In spite of the morphological and genetic similarities between E. histolytica and E. dispar the present results demonstrate striking differences in their respective cell-to-matrix adhesion processes, which may be of relevance for understanding the invasive character of E. histolytica.


Subject(s)
Cell Communication/physiology , Entamoeba histolytica/metabolism , Entamoeba/metabolism , Fibronectins/metabolism , Microscopy, Atomic Force/methods , Microscopy, Confocal/methods , Microscopy, Electron, Scanning/methods , Animals , Entamoeba/growth & development , Entamoeba/ultrastructure , Entamoeba histolytica/growth & development , Entamoeba histolytica/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...