Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 12(2): e0006234, 2018 02.
Article in English | MEDLINE | ID: mdl-29432455

ABSTRACT

There are economic and physical limitations when applying prevention and control strategies for urban vector borne diseases. Consequently, there are increasing concerns and interest in designing efficient strategies and regulations that health agencies can follow in order to reduce the imminent impact of viruses like Dengue, Zika and Chikungunya. That includes fumigation, abatization, reducing the hatcheries, picking up trash, information campaigns. A basic question that arise when designing control strategies is about which and where these ones should focus. In other words, one would like to know whether preventing the contagion or decrease vector population, and in which area of the city, is more efficient. In this work, we propose risk indexes based on the idea of secondary cases from patch to patch. Thus, they take into account human mobility and indicate which patch has more chance to be a corridor for the spread of the disease and which is more vulnerable, i.e. more likely to have cases?. They can also indicate the neighborhood where hatchery control will reduce more the number of potential cases. In order to illustrate the usefulness of these indexes, we run a set of numerical simulations in a mathematical model that takes into account the urban mobility and the differences in population density among the areas of a city. If we label by i a particular neighborhood, the transmission risk index (TRi) measures the potential secondary cases caused by a host in that neighborhood. The vector transmission risk index (VTRi) measures the potential secondary cases caused by a vector. Finally, the vulnerability risk index (VRi) measures the potential secondary cases in the neighborhood. Transmission indexes can be used to give geographical priority to some neighborhoods when applying prevention and control measures. On the other hand, the vulnerability index can be useful to implement monitoring campaigns or public health investment.


Subject(s)
Communicable Diseases/epidemiology , Communicable Diseases/transmission , Disease Transmission, Infectious/prevention & control , Insect Control/methods , Cities , Humans , Models, Theoretical , Risk Assessment , Urban Population
2.
J Theor Biol ; 437: 126-136, 2018 01 21.
Article in English | MEDLINE | ID: mdl-29079324

ABSTRACT

Dengue fever is increasing in geographical range, spread by invasion of its vector mosquitoes. The trade in second-hand tires has been implicated as a factor in this process because they act as mobile reservoirs of mosquito eggs and larvae. Regional transportation of tires can create linkages between rural areas with dengue and disease-free urban areas, potentially giving rise to outbreaks even in areas with strong local control measures. In this work we sought to model the dynamics of mosquito transportation via the tire trade, in particular to predict its role in causing unexpected dengue outbreaks through vertical transmission of the virus across generations of mosquitoes. We also aimed to identify strategies for regulating the trade in second-hand tires, improving disease control. We created a mathematical model which captures the dynamics of dengue between rural and urban areas, taking into account the movement and storage time of tires, and mosquito diapause. We simulate a series of scenarios in which a mosquito population is introduced to a dengue-free area via movement of tires, either as single or multiple events, increasing the likelihood of a dengue outbreak. A persistent disease state can be induced regardless of whether urban conditions for an outbreak are met, and an existing endemic state can be enhanced by vector input. Finally we assess the potential for regulation of tire processing as a means of reducing the transmission of dengue fever using a specific case study from Puerto Rico. Our work demonstrates the importance of the second-hand tire trade in modulating the spread of dengue fever across regions, in particular its role in introducing dengue to disease-free areas. We propose that reduction of tire storage time and control of their movement can play a crucial role in containing dengue outbreaks.


Subject(s)
Algorithms , Dengue/epidemiology , Disease Outbreaks/prevention & control , Models, Theoretical , Mosquito Control/methods , Aedes/virology , Animals , Dengue/transmission , Dengue/virology , Dengue Virus/physiology , Human Activities , Humans , Insect Vectors/virology , Transportation
3.
Curr Comput Aided Drug Des ; 11(1): 21-31, 2015.
Article in English | MEDLINE | ID: mdl-25872791

ABSTRACT

In view of the serious health problems concerning infectious diseases in heavily populated areas, we followed the strategy of lead compound diversification to evaluate the near-by chemical space for new organic compounds. To this end, twenty derivatives of nitazoxanide (NTZ) were synthesized and tested for activity against Entamoeba histolytica parasites. To ensure drug-likeliness and activity relatedness of the new compounds, the synthetic work was assisted by a quantitative structure-activity relationships study (QSAR). Many of the inherent downsides - well-known to QSAR practitioners - we circumvented thanks to workarounds which we proposed in prior QSAR publication. To gain further mechanistic insight on a molecular level, ligand-enzyme docking simulations were carried out since NTZ is known to inhibit the protozoal pyruvate ferredoxin oxidoreductase (PFOR) enzyme as its biomolecular target.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Entamoeba histolytica/drug effects , Entamoeba histolytica/enzymology , Pyruvate Synthase/antagonists & inhibitors , Thiazoles/chemistry , Thiazoles/pharmacology , Entamoebiasis/drug therapy , Entamoebiasis/parasitology , Humans , Molecular Docking Simulation , Nitro Compounds , Pyruvate Synthase/metabolism , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...