Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(13): 19071-19084, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38372925

ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent organic pollutants in the environment that are responsible for many adverse health effects. Bioremediation appears to be a healthy and cost-effective alternative for remediating PCB-contaminated environments. While some microbial species have been observed to be capable of transforming PCBs, only two different microbial pathways (rdh and bph pathways) have been described to be involved in PCB transformations. Ligninolytic enzymes have been observed or are under suspicion in some microbial PCB transformations. However, the role of these promising PCB-transforming enzymes, which are produced by fungi and some aerobic bacteria, is still unclear. The present review describes their role by identifying microbial PCB-transforming species and their reported ligninolytic enzymes whether proven or suspected to be involved in PCB transformations. There are several lines of evidence that ligninolytic enzymes are responsible for PCB transformations such as (1) the ability of purified laccases from Myceliophthora thermophila, Pycnoporus cinnabarinus, Trametes versicolor, Cladosporium sp, and Coprinus cumatus to transform hydroxy-PCBs; (2) the increased production of laccases and peroxidases by many fungi in the presence of PCBs; and (3) the enhanced PCB transformation by Pseudomonas stutzeri and Sinorhizobium meliloti NM after the addition of ligninolytic enzyme enhancers. However, if the involvement of ligninolytic enzymes in PCB transformation is clearly demonstrated in some fungal species, it does not seem to be implicated in all microbial species suggesting other still unknown metabolic pathways involved in PCB transformation and different from the bph and rdh pathways. Therefore, PCB transformation may involve several metabolic pathways, some involving ligninolytic enzymes, bph or rdh genes, and some still unknown, depending on the microbial species. In addition, current knowledge does not fully clarify the role of ligninolytic enzymes in PCB oxidation and dechlorination. Therefore, further studies focusing on purified ligninolytic enzymes are needed to clearly elucidate their role in PCB transformation.


Subject(s)
Polychlorinated Biphenyls , Polychlorinated Biphenyls/metabolism , Trametes/metabolism , Biodegradation, Environmental , Metabolic Networks and Pathways
2.
Microorganisms ; 11(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37630447

ABSTRACT

Causing major health and ecological disturbances, polychlorinated biphenyls (PCBs) are persistent organic pollutants still recovered all over the world. Microbial PCB biotransformation is a promising technique for depollution, but the involved molecular mechanisms remain misunderstood. Ligninolytic enzymes are suspected to be involved in many PCB transformations, but their assessments remain scarce. To further inventory the capabilities of microbes to transform PCBs through their ligninolytic enzymes, we investigated the role of oxidase and peroxidase among a set of microorganisms isolated from a historically PCB-contaminated site. Among 29 isolated fungi and 17 bacteria, this work reports for the first time the PCB-transforming capabilities from fungi affiliated to Didymella, Dothiora, Ilyonectria, Naganishia, Rhodoturula, Solicoccozyma, Thelebolus and Truncatella genera and bacteria affiliated to Peribacillus frigotolerans, Peribacillus muralis, Bacillus mycoides, Bacillus cereus, Bacillus toyonensis, Pseudarthrobacter sp., Pseudomonas chlororaphis, Erwinia aphidicola and Chryseobacterium defluvii. In the same way, this is the first report of fungal isolates affiliated to the Dothiora maculans specie and Cladosporium genus that displayed oxidase (putatively laccase) and peroxidase activity, respectively, enhanced in the presence of PCBs (more than 4-fold and 20-fold, respectively, compared to controls). Based on these results, the observed activities are suspected to be involved in PCB transformation.

3.
Microb Ecol ; 86(3): 1696-1708, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36646913

ABSTRACT

Polychlorinated biphenyls (PCBs) are recognized as persistent organic pollutants and accumulate in organisms, soils, waters, and sediments, causing major health and ecological perturbations. Literature reported PCB bio-transformation by fungi and bacteria in vitro, but data about the in situ impact of those compounds on microbial communities remained scarce while being useful to guide biotransformation assays. The present work investigated for the first time microbial diversity from the three-domains-of-life in a long-term contaminated brownfield (a former factory land). Soil samples were ranked according to their PCB concentrations, and a significant increase in abundance was shown according to increased concentrations. Microbial communities structure showed a segregation from the least to the most PCB-polluted samples. Among the identified microorganisms, Bacteria belonging to Gammaproteobacteria class, as well as Fungi affiliated to Saccharomycetes class or Pleurotaceae family, including some species known to transform some PCBs were abundantly retrieved in the highly polluted soil samples.


Subject(s)
Polychlorinated Biphenyls , Soil Pollutants , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/chemistry , Polychlorinated Biphenyls/metabolism , Soil Pollutants/analysis , Biodegradation, Environmental , Soil Microbiology , Bacteria/genetics , Bacteria/metabolism , Soil/chemistry
4.
Front Microbiol ; 12: 759478, 2021.
Article in English | MEDLINE | ID: mdl-34790184

ABSTRACT

A non-destructive approach based on magnetic in situ hybridization (MISH) and hybridization chain reaction (HCR) for the specific capture of eukaryotic cells has been developed. As a prerequisite, a HCR-MISH procedure initially used for tracking bacterial cells was here adapted for the first time to target eukaryotic cells using a universal eukaryotic probe, Euk-516R. Following labeling with superparamagnetic nanoparticles, cells from the model eukaryotic microorganism Saccharomyces cerevisiae were hybridized and isolated on a micro-magnet array. In addition, the eukaryotic cells were successfully targeted in an artificial mixture comprising bacterial cells, thus providing evidence that HCR-MISH is a promising technology to use for specific microeukaryote capture in complex microbial communities allowing their further morphological characterization. This new study opens great opportunities in ecological sciences, thus allowing the detection of specific cells in more complex cellular mixtures in the near future.

5.
Appl Microbiol Biotechnol ; 105(2): 647-660, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33394157

ABSTRACT

Sugar transporters are essential components of carbon metabolism and have been extensively studied to control sugar uptake by yeasts and filamentous fungi used in fermentation processes. Based on published information on characterized fungal sugar porters, we show that this protein family encompasses phylogenetically distinct clades. While several clades encompass transporters that seemingly specialized on specific "sugar-related" molecules (e.g., myo-inositol, charged sugar analogs), others include mostly either mono- or di/oligosaccharide low-specificity transporters. To address the issue of substrate specificity of sugar transporters, that protein primary sequences do not fully reveal, we screened "multi-species" soil eukaryotic cDNA libraries for mannose transporters, a sugar that had never been used to select transporters. We obtained 19 environmental transporters, mostly from Basidiomycota and Ascomycota. Among them, one belonged to the unusual "Fucose H+ Symporter" family, which is only known in Fungi for a rhamnose transporter in Aspergillus niger. Functional analysis of the 19 transporters by expression in yeast and for two of them in Xenopus laevis oocytes for electrophysiological measurements indicated that most of them showed a preference for D-mannose over other tested D-C6 (glucose, fructose, galactose) or D-C5 (xylose) sugars. For the several glucose and fructose-negative transporters, growth of the corresponding recombinant yeast strains was prevented on mannose in the presence of one of these sugars that may act by competition for the binding site. Our results highlight the potential of environmental genomics to figure out the functional diversity of key fungal protein families and that can be explored in a context of biotechnology. KEY POINTS: • Most fungal sugar transporters accept several sugars as substrates. • Transporters, belonging to 2 protein families, were isolated from soil cDNA libraries. • Environmental transporters featured novel substrate specificities.


Subject(s)
Metagenomics , Monosaccharides , Biological Transport , Glucose , Membrane Transport Proteins/genetics , Phylogeny
6.
Environ Sci Pollut Res Int ; 28(14): 17132-17145, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33394429

ABSTRACT

Pollution in the environment due to accumulation of potentially toxic metals results in deterioration of soil and water quality, thus impacting health of all living organisms including microbes. In the present investigation, a functional metagenomics approach was adopted to mine functional genes involved in metal tolerance from potentially toxic metal contaminated site. Eukaryotic cDNA library (1.0-4.0 kb) was screened for the genes providing tolerance to cadmium (Cd) toxicity through a functional complementation assay using Cd-sensitive Saccharomyces cerevisiae mutant ycf1Δ. Out of the 98 clones able to recover growth on Cd-supplemented selective medium, one clone designated as PLCc43 showed more tolerance to Cd along with some other clones. Sequence analysis revealed that cDNA PLCc43 encodes a 284 amino acid protein harbouring four characteristic zinc finger motif repeats (CXXCXGXG) and showing partial homology with heat shock protein (Hsp40) of Acanthamoeba castellanii. qPCR analysis revealed the induction of PLCc43 in the presence of Cd, which was further supported by accumulation of Cd in ycf1Δ/PLCc43 mutant. Cu-sensitive (cup1Δ), Zn-sensitive (zrc1Δ) and Co-sensitive (cot1Δ) yeast mutant strains were rescued from sensitivity when transformed with cDNA PLCc43 indicating its ability to confer tolerance to various potentially toxic metals. Oxidative stress tolerance potential of PLCc43 was also confirmed in the presence of H2O2. Present study results suggest that PLCc43 originating from a functional eukaryotic gene of soil community play an important role in detoxification of potentially toxic metals and may be used as biomarker in various contaminated sites.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/toxicity , Environmental Pollution , Hydrogen Peroxide , Metagenomics , Metals, Heavy/analysis , Metals, Heavy/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
7.
Ecotoxicology ; 30(1): 67-79, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33159264

ABSTRACT

The microbiota inhabiting in metal polluted environment develops strong defense mechanisms to combat pollution and sustain life. Investigating the functional genes of the eukaryotic microbiota inhabiting in these environments by using metatranscriptomics approach was the focus of this study. Size fractionated eukaryotic cDNA libraries (library A, < 0.5 kb, library B, 0.5-1.0 kb, and library C, > 1.0 kb) were constructed from RNA isolated from the metal contaminated soil. The library C was screened for Cadmium (Cd) tolerant genes by using Cd sensitive yeast mutant ycf1Δ by functional complementation assay, which yielded various clones capable of growing in Cd amended media. One of the Cd tolerant clones, PLCg39 was selected because of its ability to grow at high concentrations of Cd. Sequence analysis of PLCg39 showed homology with DHHC palmitoyl transferases, which are responsible for addition of palmitoyl groups to proteins and usually possess metal coordination domains. The cDNA PLCg39 was able to confer tolerance to Cd-sensitive (ycf1Δ), Copper-sensitive (cup1Δ) and Zn-sensitive (zrc1Δ) yeast mutants when grown at different concentrations of Cd (40-100 µM), Cu (150-1000 µM) and Zn (10-13 mM), respectively. The DHHC mutant akr1Δ transformed with PLCg39 rescued from the metal sensitivity indicating the role of DHHC palmitoyl transferase in metal tolerance. This study demonstrated that PLCg39 acts as a potential metal tolerant gene which could be used in bioremediation, biosensing and other biotechnological fields.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Transferases
8.
Biochimie ; 160: 183-192, 2019 May.
Article in English | MEDLINE | ID: mdl-30905733

ABSTRACT

Constant addition of heavy metal pollutants in soil resulting from anthropogenic activities can prove detrimental to both macro and micro life forms inhabiting the ecosystem. The potential functional roles of eukaryotic microbes in such environment were explored in this study by metatranscriptomics approach. Sized eukaryotic cDNA libraries, library A (<0.5 kb), library B (0.5-1.0 kb), and library C (>1 kb) were constructed from the soil RNA and screened for copper (Cu) tolerance genes by using copper sensitive yeast mutant strain cup1Δ. Screening of the cDNA libraries yielded different clones capable of growing in Cu amended medium. In the present investigation, one of the transcripts PLCc38 from the library C was characterized and tested for its ability to tolerate different heavy metals by using metal sensitive yeast mutants. Sequence analysis PLCc38 showed homology with aldehyde dehydrogenase (ALDH) and capable of tolerating high concentrations of Cu (150-1000 µM). Aldeyde dehydrogenases are stress response enzymes capable of eliminating toxic levels of aldehydes generated due to abiotic environmental stresses. The cDNA PLCc38 also provided tolerance to wide range of Cd (40-100 µM), Zn (10-13 mM) and Co (2-50 mM) concentrations. Oxidative stress tolerance potential of PLCc38 was also confirmed in presence of different concentrations of H2O2. This study proves that PLCc38 is a potent gene associated with metal tolerance which could be used to revegetate heavy metal polluted soil or as a biomarker for detection of metal contamination.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Biodegradation, Environmental , Copper/pharmacology , Eukaryota/drug effects , Eukaryota/genetics , Soil/chemistry , Transcriptome , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/isolation & purification , Amino Acid Sequence , Ecosystem , Gene Expression Profiling , Metals, Heavy , Phylogeny , Sequence Homology , Soil Microbiology , Soil Pollutants/pharmacology
9.
Sci Total Environ ; 661: 432-440, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30677688

ABSTRACT

Environmental pollution through heavy metals is an upcoming universal problem that relentlessly endangers human health, biodiversity and ecosystems. Hence remediating these heavy metal pollutants from the environment by engineering soil microbiome through metatranscriptomics is befitting reply. In the present investigation, we have constructed size fractionated cDNA libraries from eukaryotic mRNA of cadmium (Cd) contaminated soil and screened for Cd tolerant genes by yeast complementation system by using Cd sensitive ycf1Δ mutant. We are reporting one of the transformants PLCe10 (from library C, 1-4 kb) with potential tolerance towards Cd toxicity (40 µM-80 µM). Sequence analysis of PLCe10 transcript showed homology to von Willebrand factor type D domain (VWD) of vitellogenin-6 of Ascaris suum encoding 338 amino acids peptide. qPCR analysis revealed that PLCe10 induced in presence of Cd (32 fold) and also accumulated maximum amount of Cd at 60 µM Cd. This cDNA was further tested for its tolerance against other heavy metals like copper (Cu), zinc (Zn) and cobalt (Co). Heterologous complementation assays of cDNA PLCe10 showed a range of tolerance to Cu (150 µM-500 µM), Zn (10 mM-12 mM) and Co (2-4 mM). Results of the present study suggest that cDNA PLCe10 is one of the functional eukaryotic heavy metal tolerant genes present among the soil microbial community and could be exploited to rehabilitate metal contaminated sites.


Subject(s)
Helminth Proteins/genetics , Soil/chemistry , Vitellogenins/genetics , von Willebrand Factor/genetics , Amino Acid Sequence , Helminth Proteins/chemistry , Helminth Proteins/metabolism , Metals, Heavy/analysis , Protein Domains , Sequence Alignment , Soil Pollutants/analysis , Vitellogenins/chemistry , Vitellogenins/metabolism , von Willebrand Factor/chemistry , von Willebrand Factor/metabolism
10.
Metallomics ; 10(11): 1549-1559, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30229264

ABSTRACT

MTs are small cysteine-rich proteins that chelate metal ions such as Cu+ and Zn2+, and are widely distributed in several life domains, in particular the eukaryotic one. They are present in the following phyla: Opisthokonta (mainly Fungi and Metazoa), Chloroplastida, Alveolata (ciliates) and Excavata (Trichomonas) for Eukaryota and Cyanobacteria, Actinobacteria, Proteobacteria and Firmicutes for Bacteria. However, their absence in some phyla underlines that MTs are far from being fully known. The MT amino acid sequences show a great diversity of sizes and structures both in terms of cysteine motifs and organization of these motifs. This review also highlights the different oxidized, apoprotein and metalated forms of MTs, the diversity of interactions they can establish with different molecules and their central and multifunctional cellular role. We present MTs as a protein system that could be a hub in molecular interaction networks. Studying MTs as a hub in cellular interaction networks should provide new insights for a better understanding of MT functioning and cellular processes.


Subject(s)
Eukaryotic Cells/metabolism , Metabolic Networks and Pathways , Metallothionein/metabolism , Metals/metabolism
11.
J Microbiol Methods ; 152: 119-125, 2018 09.
Article in English | MEDLINE | ID: mdl-30077694

ABSTRACT

Release of heavy metals into the soil pose a significant threat to the environment and public health because of their toxicity accumulation in the food chain and persistence in nature. The potential of soil microbial diversity of cadmium (Cd) contaminated site was exploited through functional metatranscriptomics by construction of cDNA libraries A (0.1-0.5 kb), B (0.5-1.0 kb), and C (1-4 kb) of variable size, from the eukaryotic mRNA. The cDNA library B was further screened for cadmium tolerant transcripts through yeast complementation system. We are reporting one of the transformants ycf1ΔPLBe1 capable of tolerating high concentrations of Cd (40 µM - 80 µM). Sequence analysis revealed that PLBe1 cDNA showed homology with ubiquitin domain containing protein fused with AN1 type zinc finger protein of Acanthameoba castellani. Further, this cDNA was tested for its tolerance towards other heavy metals such as copper (Cu), zinc (Zn) and cobalt (Co). Functional complementation assay of cDNA PLBe1 showed a range of tolerance towards copper (150 µM - 300 µM), zinc (10 mM - 12 mM) and cobalt (2 mM - 4 mM). This study promulgates PLBe1 as credible member of multi-metal tolerant gene in the eukaryotic soil microbial community and can be used as potential member to revitalise the heavy metal contaminated sites or can be used as a biomarker to detect heavy metal contamination in the soil environment.


Subject(s)
Acclimatization , Gene Expression Profiling/methods , Metals, Heavy/analysis , Soil Microbiology , Soil Pollutants/analysis , Soil/chemistry , Ubiquitin , Acanthamoeba castellanii/metabolism , Acclimatization/genetics , Amino Acid Sequence , Biodegradation, Environmental , Cadmium/analysis , Copper/analysis , France , Protein Domains , Sequence Alignment , Sequence Analysis, DNA , Ubiquitin/genetics , Ubiquitins , Zinc/analysis , Zinc Fingers
12.
Trends Biotechnol ; 35(9): 824-835, 2017 09.
Article in English | MEDLINE | ID: mdl-28279485

ABSTRACT

Eukaryotic microorganisms from diverse environments encompass a large number of taxa, many of them still unknown to science. One strategy to mine these organisms for genes of biotechnological relevance is to use a pool of eukaryotic mRNA directly extracted from environmental samples. Recent reports demonstrate that the resulting metatranscriptomic cDNA libraries can be screened by expression in yeast for a wide range of genes and functions from many of the different eukaryotic taxa. In combination with novel emerging high-throughput technologies, we anticipate that this approach should contribute to exploring the functional diversity of the eukaryotic microbiota.


Subject(s)
Eukaryota/genetics , Gene Expression , Gene Library , High-Throughput Nucleotide Sequencing , Microbiota/genetics , RNA, Messenger/genetics
13.
J Inorg Biochem ; 167: 1-11, 2017 02.
Article in English | MEDLINE | ID: mdl-27886631

ABSTRACT

Metallothioneins are cysteine-rich proteins, which function as (i) metal carriers in basal cell metabolism and (ii) protective metal chelators in conditions of metal excess. Metallothioneins have been characterized from different eukaryotic model and cultivable species. Presently, they are categorized in 15 families but evolutionary relationships between these metallothionein families remain unresolved. Several cysteine-rich protein encoding genes that conferred Cd-tolerance in Cd-sensitive yeast mutants have previously been isolated from soil eukaryotic metatranscriptomes. They were called CRPs for "cysteine-rich proteins". These proteins, of unknown taxonomic origins, share conserved cysteine motifs and could be considered as metallothioneins. In the present work, we analyzed these CRPs with respect to their amino acid sequence features and their metal-binding abilities towards Cd, Zn and Cu metal ions. Sequence analysis revealed that they share common features with different known metallothionein families, but also exhibit unique specific features. Noticeably, CRPs display two separate cysteine-rich domains which, when expressed separately in yeast, confer Cd-tolerance. The N-terminal domain contains some conserved atypical Cys motifs, such as one CCC and two CXCC ones. Five CRPs were expressed and purified as recombinant proteins and their metal-binding characteristics were studied. All these CRPs chelated Cd(II), Zn(II) and Cu(I), although displaying a better capacity for Zn(II) coordination. All CRPs are able to confer Cd-tolerance, and four of them confer Zn-tolerance in the Zn-sensitive zrc1Δ yeast mutant. We designated these CRPs as environmental metallothioneins belonging to a new formerly undescribed metallothionein family.


Subject(s)
Metagenome , Metallothionein , Metals, Heavy/chemistry , Amino Acid Motifs , Amino Acid Sequence , Metagenomics , Metallothionein/chemistry , Metallothionein/genetics , Molecular Sequence Data
14.
Methods Mol Biol ; 1399: 273-87, 2016.
Article in English | MEDLINE | ID: mdl-26791509

ABSTRACT

Functions expressed by eukaryotic organisms in soil can be specifically studied by analyzing the pool of eukaryotic-specific polyadenylated mRNA directly extracted from environmental samples. In this chapter, we describe two alternative protocols for the extraction of high-quality RNA from soil samples. Total soil RNA or mRNA can be converted to cDNA for direct high-throughput sequencing. Polyadenylated mRNA-derived full-length cDNAs can also be cloned in expression plasmid vectors to constitute soil cDNA libraries, which can be subsequently screened for functional gene categories. Alternatively, the diversity of specific gene families can also be explored following cDNA sequence capture using exploratory oligonucleotide probes.


Subject(s)
Eukaryota/genetics , Metagenomics/methods , RNA, Messenger/isolation & purification , Sequence Analysis, DNA/methods , Cloning, Molecular , Eukaryota/isolation & purification , Gene Expression Profiling , Gene Library , Genetic Variation , RNA, Messenger/genetics , Soil
15.
Environ Microbiol ; 18(8): 2446-54, 2016 09.
Article in English | MEDLINE | ID: mdl-26626627

ABSTRACT

Metallothioneins (MTs) are small, cysteine-rich peptides involved in intracellular sequestration of heavy metals in eukaryotes. We examined the role in metal homeostasis and detoxification of an MT from the ectomycorrhizal fungus Pisolithus albus (PaMT1). PaMT1 encodes a 35 amino acid-long polypeptide, with 7 cysteine residues; most of them part of a C-x-C motif found in other known basidiomycete MTs. The expression levels of PaMT1 increased as a function of increased external Cu and Cd concentrations and were higher with Cu than with Cd. Heterologous complementation assays in metal-sensitive yeast mutants indicated that PaMT1 encodes a polypeptide capable of conferring higher tolerance to both Cu and Cd. Eucalyptus tereticornis plantlets colonized with P. albus grown in the presence of Cu and Cd showed better growth compared with those with non-mycorrhizal plants. Higher PaMT1 expression levels were recorded in mycorrhizal plants grown in the presence of Cu and Cd compared with those in control mycorrhizal plants not exposed to heavy metals. These data provide the first evidence to our knowledge that fungal MTs could protect ectomycorrhizal fungi from heavy metal stress and in turn help the plants to establish in metal-contaminated sites.


Subject(s)
Basidiomycota/metabolism , Cadmium/toxicity , Copper/toxicity , Eucalyptus/microbiology , Metallothionein/metabolism , Mycorrhizae/metabolism , Amino Acid Sequence , Eucalyptus/drug effects , Plant Development/drug effects , Plant Development/physiology , Sequence Alignment , Symbiosis
16.
PLoS One ; 9(12): e116264, 2014.
Article in English | MEDLINE | ID: mdl-25545363

ABSTRACT

Plant biomass degradation in soil is one of the key steps of carbon cycling in terrestrial ecosystems. Fungal saprotrophic communities play an essential role in this process by producing hydrolytic enzymes active on the main components of plant organic matter. Open questions in this field regard the diversity of the species involved, the major biochemical pathways implicated and how these are affected by external factors such as litter quality or climate changes. This can be tackled by environmental genomic approaches involving the systematic sequencing of key enzyme-coding gene families using soil-extracted RNA as material. Such an approach necessitates the design and evaluation of gene family-specific PCR primers producing sequence fragments compatible with high-throughput sequencing approaches. In the present study, we developed and evaluated PCR primers for the specific amplification of fungal CAZy Glycoside Hydrolase gene families GH5 (subfamily 5) and GH11 encoding endo-ß-1,4-glucanases and endo-ß-1,4-xylanases respectively as well as Basidiomycota class II peroxidases, corresponding to the CAZy Auxiliary Activity family 2 (AA2), active on lignin. These primers were experimentally validated using DNA extracted from a wide range of Ascomycota and Basidiomycota species including 27 with sequenced genomes. Along with the published primers for Glycoside Hydrolase GH7 encoding enzymes active on cellulose, the newly design primers were shown to be compatible with the Illumina MiSeq sequencing technology. Sequences obtained from RNA extracted from beech or spruce forest soils showed a high diversity and were uniformly distributed in gene trees featuring the global diversity of these gene families. This high-throughput sequencing approach using several degenerate primers constitutes a robust method, which allows the simultaneous characterization of the diversity of different fungal transcripts involved in plant organic matter degradation and may lead to the discovery of complex patterns in gene expression of soil fungal communities.


Subject(s)
DNA Primers/metabolism , Fungi/enzymology , Genes, Fungal , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Lignin/metabolism , Polymerase Chain Reaction , Soil Microbiology , Base Sequence , DNA, Complementary/genetics , DNA, Fungal/genetics , Fungi/genetics , Molecular Sequence Data , Phylogeny
17.
BMC Biotechnol ; 14: 80, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25183040

ABSTRACT

BACKGROUND: Construction of high quality cDNA libraries from the usually low amounts of eukaryotic mRNA extracted from environmental samples is essential in functional metatranscriptomics for the selection of functional, full-length genes encoding proteins of interest. Many of the inserts in libraries constructed by standard methods are represented by truncated cDNAs due to premature stoppage of reverse transcriptase activity and preferential cloning of short cDNAs. RESULTS: We report here a simple and cost effective technique for preparation of sized eukaryotic cDNA libraries from as low as three microgram of total soil RNA dominated by ribosomal and bacterial RNA. cDNAs synthesized by a template switching approach were size-fractionated by two dimensional agarose gel electrophoresis prior to PCR amplification and cloning. Effective size selection was demonstrated by PCR amplification of conserved gene families specific of each size class. Libraries of more than one million independent inserts whose sizes ranged between one and four kb were thus produced. Up to 80% of the insert sequences were homologous to eukaryotic gene sequences present in public databases. CONCLUSIONS: A simple and cost effective technique has been developed to construct sized eukaryotic cDNA libraries from environmental samples. This technique will facilitate expression cloning of environmental eukaryotic genes and contribute to a better understanding of basic biological and/or ecological processes carried out by eukaryotic microbial communities.


Subject(s)
DNA, Complementary/chemical synthesis , Gene Library , RNA, Bacterial/isolation & purification , RNA, Ribosomal/isolation & purification , Cloning, Molecular/methods , Soil/chemistry
18.
Environ Microbiol ; 15(10): 2829-40, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23663419

ABSTRACT

Heavy metals are pollutants which affect all organisms. Since a small number of eukaryotes have been investigated with respect to metal resistance, we hypothesize that many genes that control this phenomenon remain to be identified. This was tested by screening soil eukaryotic metatranscriptomes which encompass RNA from organisms belonging to the main eukaryotic phyla. Soil-extracted polyadenylated mRNAs were converted into cDNAs and 35 of them were selected for their ability to rescue the metal (Cd or Zn) sensitive phenotype of yeast mutants. Few of the genes belonged to families known to confer metal resistance when overexpressed in yeast. Several of them were homologous to genes that had not been studied in the context of metal resistance. For instance, the BOLA ones, which conferred cross metal (Zn, Co, Cd, Mn) resistance may act by interfering with Fe homeostasis. Other genes, such as those encoding 110- to 130-amino-acid-long, cysteine-rich polypeptides, had no homologues in databases. This study confirms that functional metatranscriptomics represents a powerful approach to address basic biological processes in eukaryotes. The selected genes can be used to probe new pathways involved in metal homeostasis and to manipulate the resistance level of selected organisms.


Subject(s)
Drug Resistance/genetics , Eukaryota/drug effects , Eukaryota/genetics , Metals, Heavy/pharmacology , Soil Microbiology , Soil Pollutants/pharmacology , Yeasts/genetics , Gene Expression Profiling , Gene Library , Genetic Variation , Metals, Heavy/metabolism , Molecular Sequence Data , Soil Pollutants/metabolism , Yeasts/drug effects
19.
PLoS One ; 7(1): e28967, 2012.
Article in English | MEDLINE | ID: mdl-22238585

ABSTRACT

Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica) and spruce (Picea abies) forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60%) and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides), sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin) and glycoside hydrolases represented 0.5% (beech soil)-0.8% (spruce soil) of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases) were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus suggesting a potentially significant contribution of non-fungal eukaryotes in the actual hydrolysis of soil organic matter.


Subject(s)
Eukaryota/genetics , Gene Expression Profiling , Soil/analysis , Trees , Animals , Biodiversity , Databases, Genetic , Eukaryota/classification , Eukaryota/isolation & purification , Eukaryota/metabolism , Fagus , Gene Library , Genetic Variation/genetics , Genetic Variation/physiology , Metabolomics/methods , Molecular Sequence Annotation , Picea , Sequence Analysis, DNA , Soil/chemistry , Soil Microbiology , Trees/chemistry , Trees/genetics , Trees/metabolism
20.
ISME J ; 5(12): 1871-80, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21654847

ABSTRACT

Functional environmental genomics has the potential to identify novel biological functions that the systematic sequencing of microbial genomes or environmental DNA may fail to uncover. We targeted the functions expressed by soil eukaryotes using a metatranscriptomic approach based on the use of soil-extracted polyadenylated messenger RNA to construct environmental complementary DNA expression libraries. Functional complementation of a yeast mutant defective in di/tripeptide uptake identified a novel family of oligopeptide transporters expressed by fungi. This family has a patchy distribution in the Basidiomycota and Ascomycota and is present in the genome of a Saccharomyces cerevisiae wine strain. High throughput phenotyping of yeast mutants expressing two environmental transporters showed that they both displayed broad substrate specificity and could transport more than 60-80 dipeptides. When expressed in Xenopus oocytes one environmental transporter induced currents upon dipeptide addition, suggesting proton-coupled co-transport of dipeptides. This transporter was also able to transport specifically cysteine. Deletion of the two copies of the corresponding gene family members in the genome of the wine yeast strain severely reduced the number of dipeptides that it could assimilate. These results demonstrate that these genes are functional and can be used by fungi to efficiently scavenge the numerous, low concentration, oligopeptides continuously generated in soils by proteolysis.


Subject(s)
Membrane Transport Proteins/metabolism , Metagenomics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Soil Microbiology , Animals , Biological Transport , Dipeptides/metabolism , Membrane Transport Proteins/genetics , Oligopeptides/metabolism , Oocytes/metabolism , Proteolysis , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...