Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Toxicol Chem ; 42(11): 2329-2335, 2023 11.
Article in English | MEDLINE | ID: mdl-37477488

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) and mercury (Hg) are harmful compounds that are widely present in the environment, partly due to spills and atmospheric pollution. The presence of PFAS and Hg in the tissues of animals that are harvested by rural and Indigenous Alaskans is of great concern, yet fish in Arctic Alaska have not previously been assessed for concentrations of PFAS. Fish species of subsistence and recreational importance were collected from nearshore Beaufort and Chukchi Sea, Alaska habitats and assessed for PFAS and total mercury concentrations [THg]. We found multiple PFAS compounds present at low levels (<3 µg/kg) in the muscle tissue of inconnu, broad whitefish, Dolly Varden char, Arctic flounder, saffron cod, humpback whitefish, and least cisco. In addition, [THg] levels in these fish were well below levels triggering local fish consumption guidelines (<170 µg/kg). These initial results indicate no evidence of the Alaska Arctic nearshore fish species examined as an avenue of PFAS or Hg exposure to people who harvest them. However, sources and trends of these contaminants in the Arctic require further investigation. Environ Toxicol Chem 2023;42:2329-2335. © 2023 SETAC.


Subject(s)
Fluorocarbons , Mercury , Salmonidae , Water Pollutants, Chemical , Humans , Animals , Mercury/analysis , Alaska , Arctic Regions , Environmental Monitoring , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 298: 134279, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35283142

ABSTRACT

Fish consumption has many health benefits, but exposure to contaminants, such as mercury (Hg), in fish tissue can be detrimental to human health. The Tanana River drainage, Alaska, USA supports the largest recreational harvest of burbot (Lota lota) in the state, yet information to evaluate the potential risks of consumption by humans is lacking. To narrow this knowledge gap, we sought to (i) quantify the concentrations of total Hg ([THg]) in burbot muscle and liver tissue and the ratio between the two tissues, (ii) assess the effect of age, length, and sex on [THg] in muscle and liver tissue, (iii) evaluate if [THg] in muscle tissue varied based on trophic information, and (iv) compare observed [THg] to consumption guidelines and statewide baseline data. The mean [THg] was 268.2 ng/g ww for muscle tissue and 62.3 ng/g ww for liver tissue. Both muscle [THg] and liver [THg] values were positively associated with fish length. Trophic information (δ15N and δ13C) was not significantly related to measured [THg] in burbot muscle, which is inconsistent with typical patterns of biomagnification observed in other fishes. All burbot sampled were within the established categories for consumption recommendations determined by the State of Alaska for women of childbearing age and children. Our results provide the necessary first step towards informed risk assessment of burbot consumption in the Tanana drainage and offer parallels to fisheries and consumers throughout the subarctic and Arctic region.


Subject(s)
Gadiformes , Mercury , Water Pollutants, Chemical , Alaska , Animals , Ecotoxicology , Environmental Monitoring , Female , Fishes , Humans , Mercury/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...