Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 69: 223-232, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31918374

ABSTRACT

The aim of this work was to assess the performance of a prototype compact gamma camera (MediPROBE) based on a CdTe semiconductor hybrid pixel detector, for coded aperture imaging. This probe can be adopted for various tasks in nuclear medicine such as preoperative sentinel lymph node localization, breast imaging with 99mTc radiotracers and thyroid imaging, and in general in radioguided surgery tasks. The hybrid detector is an assembly of a 1-mm thick CdTe semiconductor detector bump-bonded to a photon-counting CMOS readout circuit of the Medipix2 series or energy-sensitive Timepix detector. MediPROBE was equipped with a set of two coded aperture masks with 0.07-mm or 0.08-mm diameter holes. We performed laboratory measurements of field of view, system spatial resolution, and signal-difference-to-noise ratio, by using gamma-emitting radioactive sources (109Cd, 125I, 241Am, 99mTc). The system spatial resolution in the lateral direction was 0.56 mm FWHM (coded aperture mask with holes of 0.08 mm and a 60 keV source) at a source-collimator distance of 50 mm and a field of view of 40 mm by side. Correspondingly, the longitudinal resolution in 3D source localization tasks was about 3 mm. MediPROBE showed a significant improvement in terms of spatial resolution when equipped with the high-resolution coded apertures, with respect to the performance previously reported with 1-2 mm pinhole apertures as well as with respect to adopting a 0.35 mm pinhole aperture.


Subject(s)
Gamma Cameras , Radiosurgery/instrumentation , Radiosurgery/methods , Cadmium Compounds , Gamma Rays , Humans , Neoplasms/diagnostic imaging , Phantoms, Imaging , Photons , Radionuclide Imaging , Reproducibility of Results , Semiconductors , Signal-To-Noise Ratio , Tellurium
2.
Phys Med ; 34: 18-27, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28111101

ABSTRACT

Charged particle therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbon ions. A critical issue is the monitoring of the beam range so to check the correct dose deposition to the tumor and surrounding tissues. The design of a new tracking device for beam range real-time monitoring in pencil beam carbon ion therapy is presented. The proposed device tracks secondary charged particles produced by beam interactions in the patient tissue and exploits the correlation of the charged particle emission profile with the spatial dose deposition and the Bragg peak position. The detector, currently under construction, uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a pixelated Lutetium Fine Silicate (LFS) crystal calorimeter. An algorithm to account and correct for emission profile distortion due to charged secondaries absorption inside the patient tissue is also proposed. Finally detector reconstruction efficiency for charged particle emission profile is evaluated using a Monte Carlo simulation considering a quasi-realistic case of a non-homogenous phantom.


Subject(s)
Heavy Ion Radiotherapy/instrumentation , Equipment Design , Phantoms, Imaging , Protons , Radiotherapy Dosage , Scintillation Counting
SELECTION OF CITATIONS
SEARCH DETAIL
...