Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Gene Regul Mech ; 1864(9): 194732, 2021 09.
Article in English | MEDLINE | ID: mdl-34242825

ABSTRACT

Brain differential morphogenesis in females is one of the major phenotypic manifestations of caste development in honey bees. Brain diphenism appears at the fourth larval phase as a result of the differential feeding regime developing females are submitted during early phases of larval development. Here, we used a forward genetics approach to test the early brain molecular response to differential feeding leading to the brain diphenism observed at later developmental phases. Using RNA sequencing analysis, we identified 53 differentially expressed genes (DEGs) between the brains of queens and workers at the third larval phase. Since miRNAs have been suggested to play a role in caste differentiation after horizontal and vertical transmission, we tested their potential participation in regulating the DEGs. The miRNA-mRNA interaction network, including the DEGs and the royal- and worker-jelly enriched miRNA populations, revealed a subset of miRNAs potentially involved in regulating the expression of DEGs. The interaction of miR-34, miR-210, and miR-317 with Takeout, Neurotrophin-1, Forked, and Masquerade genes was experimentally confirmed using a luciferase reporter system. Taken together, our results reconstruct the regulatory network that governs the development of the early brain diphenism in honey bees.


Subject(s)
Animal Feed/analysis , Bees/growth & development , Gene Expression Profiling/veterinary , Gene Regulatory Networks , Animals , Bees/genetics , Brain/growth & development , Brain/metabolism , Female , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Larva/genetics , Larva/growth & development , MicroRNAs/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...