Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
2.
Microbiol Res ; 263: 127134, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35905580

ABSTRACT

Streptococcus pneumoniae (Spn) kills Staphylococcus aureus (Sau) through a contact-dependent mechanism that is catalyzed by cations, including iron, to convert hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (•OH). There are two well-characterized ABC transporters that contribute to the pool of iron in Spn, named Pia and Piu. Some Spn strains have acquired genes mef(E)/mel encoding another ABC trasporter (Mega) that produces an inducible efflux pump for resistance to macrolides. In macrolide-resistant Spn clinical isolates the insertion of Mega class 1. IV and 2. IVc deleted the locus piaABCD and these strains were attenuated for intoxicating Sau. The goal of this study was to investigate if the disruption of iron acquisition, or the antimicrobial-resistance activity of Mega, contributed to inhibiting the killing mechanism. Neither depletion of iron with 2,2'-dipyridyl-d8 (DP) nor incubating with a double knockout mutant SpnΔpiaAΔpiuA, inhibited killing of Sau. Clinical Spn strains carrying Mega1. IV or Mega2. IVc showed a significant delay for killing Sau. An ex vivo recombination system was used to transfer Mega1. IV or Mega2. IVc to reference Spn strains, which was confirmed by whole genome sequencing, and recombinants TIGR4Mega2. IVc, D39Mega2. IVc, and D39Mega1. IV were delayed for killing Sau. We then compared Sau killing of selected Mega-carrying Spn strains when incubated with sub-inhibitory erythromycin (Mega-induced) or sub-inhibitory cefuroxime. Remarkably, killing of Sau was completely inhibited under the Mega-induced condition whereas incubation with cefuroxime did not interfere with killing. Both mef(E) and mel were upregulated > 400-fold, and spxB (encoding an enzyme responsible for production of most H2O2) was upregulated 14.2-fold, whereas transcription of the autolysin (lytA) gene was downregulated when incubated with erythromycin. We demonstrated that erythromycin induction of Mega inhibits the •OH-mediated intoxication of Sau and that the inhibition occurred at the post-translational level suggesting that an imbalance of ions in the membrane inhibits these reactions.


Subject(s)
Staphylococcal Infections , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Cefuroxime , Drug Resistance, Bacterial/genetics , Erythromycin/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Iron , Macrolides/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus/genetics , Streptococcus pneumoniae/genetics
3.
ACS Infect Dis ; 5(10): 1738-1753, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31373203

ABSTRACT

Emerging resistance to current antimalarial medicines underscores the importance of identifying new drug targets and novel compounds. Malaria parasites are purine auxotrophic and import purines via the Plasmodium falciparum equilibrative nucleoside transporter type 1 (PfENT1). We previously showed that PfENT1 inhibitors block parasite proliferation in culture. Our goal was to identify additional, possibly more optimal chemical starting points for a drug discovery campaign. We performed a high throughput screen (HTS) of GlaxoSmithKline's 1.8 million compound library with a yeast-based assay to identify PfENT1 inhibitors. We used a parallel progression strategy for hit validation and expansion, with an emphasis on chemical properties in addition to potency. In one arm, the most active hits were tested for human cell toxicity; 201 had minimal toxicity. The second arm, hit expansion, used a scaffold-based substructure search with the HTS hits as templates to identify over 2000 compounds; 123 compounds had activity. Of these 324 compounds, 175 compounds inhibited proliferation of P. falciparum parasite strain 3D7 with IC50 values between 0.8 and ∼180 µM. One hundred forty-two compounds inhibited PfENT1 knockout (pfent1Δ) parasite growth, indicating they also hit secondary targets. Thirty-two hits inhibited growth of 3D7 but not pfent1Δ parasites. Thus, PfENT1 inhibition was sufficient to block parasite proliferation. Therefore, PfENT1 may be a viable target for antimalarial drug development. Six compounds with novel chemical scaffolds were extensively characterized in yeast-, parasite-, and human-erythrocyte-based assays. The inhibitors showed similar potencies against drug sensitive and resistant P. falciparum strains. They represent attractive starting points for development of novel antimalarial drugs.


Subject(s)
Antimalarials/pharmacology , Biological Transport/drug effects , Cell Proliferation/drug effects , Drug Discovery , Plasmodium falciparum/drug effects , Purines/metabolism , Antimalarials/chemistry , Erythrocytes/drug effects , Gene Knockout Techniques , Hep G2 Cells/drug effects , High-Throughput Screening Assays , Humans , Malaria/parasitology , Malaria, Falciparum/parasitology , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/drug effects , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/drug effects , Protozoan Proteins/genetics , Transcriptome , Yeasts/drug effects
4.
Int J Parasitol Drugs Drug Resist ; 6(1): 1-11, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26862473

ABSTRACT

Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([(3)H]adenosine) and pyrimidines ([(3)H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 µM), compared to guanosine (14.9 µM) and adenosine (142 µM). For pyrimidines, thymidine had an IC50 of 183 µM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 µM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs that target both falciparum and vivax ENT1 may be feasible.


Subject(s)
Antimalarials/pharmacology , Drug Discovery , Equilibrative Nucleoside Transporter 1/antagonists & inhibitors , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/antagonists & inhibitors , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/metabolism , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Adenosine/pharmacology , Dipyridamole/pharmacology , Equilibrative Nucleoside Transporter 1/genetics , Guanosine/pharmacology , Humans , Inhibitory Concentration 50 , Inosine/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Malaria, Vivax/prevention & control , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/genetics , Plasmodium falciparum/metabolism , Plasmodium vivax/genetics , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics , Purines/metabolism , Purines/pharmacology , Pyrimidines/metabolism , Saccharomyces cerevisiae/genetics , Uridine/pharmacology
5.
ACS Chem Biol ; 10(3): 775-83, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25602169

ABSTRACT

Equilibrative transporters are potential drug targets; however, most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64 560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2-2 µM). These nine compounds completely blocked [(3)H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5-50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5-50 µM). Wild-type (WT) parasite IC50 values were up to 4-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that, in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development.


Subject(s)
Antimalarials/pharmacology , High-Throughput Screening Assays , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/antagonists & inhibitors , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Trophozoites/drug effects , Adenosine/metabolism , Antimalarials/chemistry , Axenic Culture , Biological Transport/drug effects , Gene Deletion , Gene Expression , Genetic Complementation Test , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/genetics , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/metabolism , Nucleoside Transport Proteins/genetics , Nucleoside Transport Proteins/metabolism , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Trophozoites/growth & development , Trophozoites/metabolism , Uridine/analogs & derivatives , Uridine/pharmacology
6.
Ann N Y Acad Sci ; 1342: 19-28, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25424653

ABSTRACT

Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophs. In all life cycle stages, they require purines for RNA and DNA synthesis and other cellular metabolic processes. Purines are imported from the host erythrocyte by equilibrative nucleoside transporters (ENTs). They are processed via purine salvage pathway enzymes to form the required purine nucleotides. The Plasmodium falciparum genome encodes four putative ENTs (PfENT1-4). Genetic, biochemical, and physiologic evidence suggest that PfENT1 is the primary purine transporter supplying the purine salvage pathway. Protein mass spectrometry shows that PfENT1 is expressed in all parasite stages. PfENT1 knockout parasites are not viable in culture at purine concentrations found in human blood (<10 µM). Thus, PfENT1 is a potential target for novel antimalarial drugs, but no PfENT1 inhibitors have been identified to test the hypothesis. Identifying inhibitors of PfENT1 is an essential step to validate PfENT1 as a potential antimalarial drug target.


Subject(s)
Antimalarials/metabolism , Drug Delivery Systems/trends , Drug Discovery/trends , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Purines/metabolism , Animals , Antimalarials/administration & dosage , Humans , Malaria/drug therapy , Malaria/metabolism , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/antagonists & inhibitors , Parasites/drug effects , Parasites/metabolism , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors
7.
Biochem J ; 446(2): 179-90, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22670848

ABSTRACT

Malaria, caused by Plasmodia parasites, affects hundreds of millions of people. As purine auxotrophs, Plasmodia use transporters to import host purines for subsequent metabolism by the purine salvage pathway. Thus purine transporters are attractive drug targets. All sequenced Plasmodia genomes encode four ENTs (equilibrative nucleoside transporters). During the pathogenic intraerythrocytic stages, ENT1 is a major route of purine nucleoside/nucleobase transport. Another plasma membrane purine transporter exists because Plasmodium falciparum ENT1-knockout parasites survive at supraphysiological purine concentrations. The other three ENTs have not been characterized functionally. Codon-optimized Pf- (P. falciparum) and Pv- (Plasmodium vivax) ENT4 were expressed in Xenopus laevis oocytes and substrate transport was determined with radiolabelled substrates. ENT4 transported adenine and 2'-deoxyadenosine at the highest rate, with millimolar-range apparent affinity. ENT4-expressing oocytes did not accumulate hypoxanthine, a key purine salvage pathway substrate, or AMP. Micromolar concentrations of the plant hormone cytokinin compounds inhibited both PfENT4 and PvENT4. In contrast with PfENT1, ENT4 interacted with the immucillin compounds in the millimolar range and was inhibited by 10 µM dipyridamole. Thus ENT4 is a purine transporter with unique substrate and inhibitor specificity. Its role in parasite physiology remains uncertain, but is likely to be significant because of the strong conservation of ENT4 homologues in Plasmodia genomes.


Subject(s)
Equilibrative Nucleoside Transport Proteins/metabolism , Plasmodium falciparum/metabolism , Plasmodium vivax/metabolism , Protozoan Proteins/metabolism , Adenine/metabolism , Animals , Biological Transport/drug effects , Cytokinins/pharmacology , Deoxyadenosines/metabolism , Dipyridamole/pharmacology , Equilibrative Nucleoside Transport Proteins/antagonists & inhibitors , Equilibrative Nucleoside Transport Proteins/chemistry , Equilibrative Nucleoside Transport Proteins/genetics , Kinetics , Membrane Transport Modulators/pharmacology , Oocytes/drug effects , Oocytes/metabolism , Phosphodiesterase Inhibitors/pharmacology , Plant Growth Regulators/pharmacology , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Secondary , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity , Xenopus laevis
8.
J Biol Chem ; 285(22): 17001-10, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20335165

ABSTRACT

Purine transport is essential for malaria parasites to grow because they lack the enzymes necessary for de novo purine biosynthesis. The Plasmodium falciparum Equilibrative Nucleoside Transporter 1 (PfENT1) is a member of the equilibrative nucleoside transporter (ENT) gene family. PfENT1 is a primary purine transport pathway across the P. falciparum plasma membrane because PfENT1 knock-out parasites are not viable at physiologic extracellular purine concentrations. Topology predictions and experimental data indicate that ENT family members have eleven transmembrane (TM) segments although their tertiary structure is unknown. In the current work, we showed that a naturally occurring polymorphism, F394L, in TM11 affects transport substrate K(m). We investigated the structure and function of the TM11 segment using the substituted cysteine accessibility method. We showed that mutation to Cys of two highly conserved glycine residues in a GXXXG motif significantly reduces PfENT1 protein expression levels. We speculate that the conserved TM11 GXXXG glycines may be critical for folding and/or assembly. Small, cysteine-specific methanethiosulfonate (MTS) reagents reacted with four TM11 Cys substitution mutants, L393C, I397C, T400C, and Y403C. Larger MTS reagents do not react with the more cytoplasmic positions. Hypoxanthine, a transported substrate, protected L393C, I397C, and T400C from covalent modification by the MTS reagents. Plotted on an alpha-helical wheel, Leu-393, Ile-397, and Thr-400 lie on one face of the helix in a 60 degrees arc suggesting that TM11 is largely alpha helical. We infer that they line a water-accessible surface, possibly the purine permeation pathway. These results advance our understanding of the ENT structure.


Subject(s)
Equilibrative Nucleoside Transporter 1/metabolism , Plasmodium falciparum/metabolism , Amino Acid Sequence , Animals , Cell Membrane/metabolism , Cysteine/chemistry , Glycine/chemistry , Hypoxanthine/chemistry , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Polymorphism, Genetic , Protein Structure, Tertiary , Purines/chemistry , Sequence Homology, Amino Acid
9.
Philos Trans A Math Phys Eng Sci ; 367(1890): 1051-6, 2009 Mar 13.
Article in English | MEDLINE | ID: mdl-19087936

ABSTRACT

We describe the use of new eScience tools to support collaboration, including the use of XML data representations to support shared viewing of the information content of data, metadata tools for documenting data and Web 2.0 social networking tools for documenting ideas and the collaboration process. This latter work has led to the development of the http://SciSpace.net Web resource.


Subject(s)
Cooperative Behavior , Database Management Systems/trends , Databases, Factual/trends , Ecology/methods , Information Storage and Retrieval/trends , Internet , Models, Theoretical , Software , User-Computer Interface , Computer Simulation , Ecology/trends , Information Dissemination/methods
10.
Philos Trans A Math Phys Eng Sci ; 367(1890): 967-85, 2009 Mar 13.
Article in English | MEDLINE | ID: mdl-19087935

ABSTRACT

We review the work carried out within the eMinerals project to develop eScience solutions that facilitate a new generation of molecular-scale simulation work. Technological developments include integration of compute and data systems, developing of collaborative frameworks and new researcher-friendly tools for grid job submission, XML data representation, information delivery, metadata harvesting and metadata management. A number of diverse science applications will illustrate how these tools are being used for large parameter-sweep studies, an emerging type of study for which the integration of computing, data and collaboration is essential.


Subject(s)
Climate , Internet , Minerals/chemistry , Models, Chemical , Models, Molecular , Science/methods , Software , Computer Simulation
11.
Diabet Med ; 23(2): 176-84, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16433716

ABSTRACT

AIMS: Assessment of the impact of health research is a growing but problematic field. We examined how a combination of approaches might together inform assessment of the impact of a body of diabetes research published in 1981 and help identify factors behind success. METHODS: Three broad approaches were applied to the work of one team leader of acknowledged influence. Standard bibliographic analysis was complemented by a second approach which categorized the importance of the primary publications to the papers citing them, in four domains. In parallel, a third approach involved qualitative assessment using surveys, critical pathway analysis by, and interviews of, co-authors and external experts. Extending the approach incorporated key additional publications from other years. RESULTS: In 1981, the team leader published 29 papers. Citations to these 29 first generation papers varied from 1 to 76 and resulted in 799 second generation papers. Citations to these produced 12 891 third generation papers. Analysis of second generation papers suggested the cited first generation paper was thought to be of considerable or essential significance in only 9% of cases. While much research made little impact, qualitative analysis included a wealth of information, sometimes missed by standard bibliographic techniques, on where the identified research influenced important streams of clinical development. Analysis covered major research studies (such as the Diabetes Control and Complications Trial), insulin pump therapy, and career development of co-authors. CONCLUSIONS: Understanding the impact of research requires multiple approaches. With refinement, these techniques could be employed more widely and potentially could inform research policy.


Subject(s)
Diabetes Mellitus/therapy , Research , Acarbose/therapeutic use , Bibliometrics , Critical Pathways , Diabetes Mellitus/surgery , Humans , Hypoglycemic Agents/therapeutic use , Insulin Infusion Systems , Periodicals as Topic
12.
Gene ; 263(1-2): 219-30, 2001 Jan 24.
Article in English | MEDLINE | ID: mdl-11223261

ABSTRACT

The BEL group of retroelements is present in greater numbers, variety and taxonomic range than may have been thought previously. In addition to the insects, nematodes and schistosomes, BEL-like elements are present in echinoderms, urochordates, and at least two highly diverged species of fish. We describe one new full-length BEL-like element in Fugu that we call Suzu, another in Drosophila that we call Tinker, and seven new families in C. elegans. Many of the C. elegans elements have an unusual insertion at the 5' end. The previously known Roo, TRAM and Telemac are also BEL-like retrotransposons. Some BEL-like elements have captured an envelope gene, probably from other retroelements in some cases but from a phlebovirus in one case.


Subject(s)
Caenorhabditis elegans/genetics , Drosophila Proteins , Drosophila melanogaster/genetics , Fishes/genetics , Retroelements/genetics , Terminal Repeat Sequences/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Databases, Factual , Endopeptidases/genetics , Gene Products, env/genetics , Insect Proteins/genetics , Molecular Sequence Data , Phylogeny , RNA, Transfer/genetics , RNA-Directed DNA Polymerase/genetics , Retroviridae/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Zinc Fingers/genetics
13.
Mem Inst Oswaldo Cruz ; 95(4): 545-51, 2000.
Article in English | MEDLINE | ID: mdl-10904413

ABSTRACT

Analysis of restriction fragment length polymorphism (RFLP) profiles derived from digestion of polymerase chain reaction (PCR) products of the ribosomal 18S from Trypanosoma cruzi yields a typical 'riboprint' profile that can vary intraspecifically. A selection of 21 stocks of T. cruzi and three outgroup taxa: T. rangeli, T. conorhini and Leishmania braziliensis were analysed by riboprinting to assess divergence within and between taxa. T. rangeli, T. conorhini and L. braziliensis could be easily differentiated from each other and from T. cruzi. Phenetic analysis of PCR-RFLP profiles indicated that, with one or two exceptions, stocks of T. cruzi could be broadly partitioned into two groups that formally corresponded to T. cruzi I and T. cruzi II respectively. To test if ribosomal 18S sequences were homogeneous within each taxon, gradient gel electrophoresis methods were employed utilising either chemical or temperature gradients. Upon interpretation of the melting profiles of riboprints and a section of the 18S independently amplified by PCR, there would appear to be at least two divergent 18S types present within T. cruzi. Heterogeneity within copies of the ribosomal 18S within a single genome has therefore been demonstrated and interestingly, this dimorphic arrangement was also present in the outgroup taxa. Presumably the ancestral duplicative event that led to the divergent 18S types preceded that of speciation within this group. These divergent 18S paralogues may have, or had, different functional pressures or rates of molecular evolution. Whether or not these divergent types are equally transcriptionally active throughout the life cycle, remain to be assessed.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Genetic Variation , RNA, Ribosomal, 18S/chemistry , Trypanosoma cruzi/classification , Animals , Base Sequence , DNA Fragmentation , Evolution, Molecular , Hot Temperature , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Sequence Homology, Nucleic Acid , Trypanosoma cruzi/genetics
14.
Mem. Inst. Oswaldo Cruz ; 94(suppl.1): 189-93, Sept. 1999.
Article in English | LILACS | ID: lil-245617

ABSTRACT

Extensive characterisation of Trypanosoma cruzi by isoenzyme phenotypes has separated the species into three principal zymodeme groups, Z1, Z2 and Z3, and into many individual zymodemes. There is marked diversity within Z2. A strong correlation has been demonstrated between the strain clusters determined by isoenzymes and those obtained using random amplified polymorphic DNA (RAPD) profiles. Polymorphisms in ribosomal RNA genes, in mini-exon genes, and microsatellite fingerprinting indicate the presence of at least two principal T. cruzi genetic lineages. Lineage 1 appears to correspond with Z2 and lineage 2 with Z1. Z1 (lineage 2) is associated with Didelphis. Z2 (lineage 1) may be associated with a primate host. Departures from Hardy-Weinberg equilibrium and linkage disequilibrium indicate that propagation of T. cruzi is predominantly clonal. Nevertheless, two studies show putative homozygotes and heterozygotes circulating sympatrically: the allozyme frequencies for phosphoglucomutase, and hybrid RAPD profiles suggest that genetic exchange may be a current phenomenon in some T. cruzi transmission cycles. We were able to isolate dual drug-resistant T. cruzi biological clones following copassage of putative parents carrying single episomal drug-resistant markers. A multiplex PCR confirmed that dual drug-resistant clones carried both episomal plasmids. Preliminary karyotype analysis suggests that recombination may not be confined to the extranuclear genome.


Subject(s)
Animals , Genetic Variation , Trypanosoma cruzi/genetics , Drug Resistance , Genetic Markers , Mammals , Opossums , Random Amplified Polymorphic DNA Technique
15.
Mem Inst Oswaldo Cruz ; 94 Suppl 1: 189-93, 1999.
Article in English | MEDLINE | ID: mdl-10677713

ABSTRACT

Extensive characterisation of Trypanosoma cruzi by isoenzyme phenotypes has separated the species into three principal zymodeme groups, Z1, Z2 and Z3, and into many individual zymodemes. There is marked diversity within Z2. A strong correlation has been demonstrated between the strain clusters determined by isoenzymes and those obtained using random amplified polymorphic DNA (RAPD) profiles. Polymorphisms in ribosomal RNA genes, in mini-exon genes, and microsatellite fingerprinting indicate the presence of at least two principal T. cruzi genetic lineages. Lineage 1 appears to correspond with Z2 and lineage 2 with Z1. Z1 (lineage 2) is associated with Didelphis. Z2 (lineage 1) may be associated with a primate host. Departures from Hardy-Weinberg equilibrium and linkage disequilibrium indicate that propagation of T. cruzi is predominantly clonal. Nevertheless, two studies show putative homozygotes and heterozygotes circulating sympatrically: the allozyme frequencies for phosphoglucomutase, and hybrid RAPD profiles suggest that genetic exchange may be a current phenomenon in some T. cruzi transmission cycles. We were able to isolate dual drug-resistant T. cruzi biological clones following copassage of putative parents carrying single episomal drug-resistant markers. A multiplex PCR confirmed that dual drug-resistant clones carried both episomal plasmids. Preliminary karyotype analysis suggests that recombination may not be confined to the extranuclear genome.


Subject(s)
Drug Resistance/genetics , Genetic Variation , Trypanosoma cruzi/genetics , Animals , Anti-Bacterial Agents/pharmacology , Genetic Markers , Mammals , Neomycin/pharmacology , Opossums , Phosphotransferases (Alcohol Group Acceptor)/pharmacology , Random Amplified Polymorphic DNA Technique , Species Specificity , Transformation, Genetic , Trypanosoma cruzi/classification , Trypanosoma cruzi/drug effects
16.
Parasitology ; 117 ( Pt 3): 243-7, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9774789

ABSTRACT

In order to investigate the molecular taxonomy within Trypanosoma cruzi, the ribosomal small subunit (18S) gene was amplified by polymerase chain reaction (PCR) from a selection of 21 stocks and 3 outgroup taxa. Amplification products were digested with 10 restriction enzymes; restriction fragments were separated by polyacrylamide gel electrophoresis and profiles were visualized by silver staining. Upon analysis of such riboprint profiles, an estimate of pairwise phenetic distance between stocks of T. cruzi was calculated. Upon principal coordinate analysis of this data matrix, a tendency towards a bi-polar grouping of stocks was observed. These 2 groups were predominantly either zymodeme 1 stocks or zymodeme 2 stocks. The position of zymodeme 3 stocks remained intermediate between the 2 groups but did not form a coherent group by themselves. It would therefore appear premature to warrant division of T. cruzi into 2 discrete taxa or subspecies until the relationships of further zymodeme 3 stocks are elucidated.


Subject(s)
DNA, Ribosomal/chemistry , RNA, Ribosomal, 18S/chemistry , Trypanosoma cruzi/classification , Animals , DNA Primers/chemistry , DNA Restriction Enzymes/chemistry , DNA, Protozoan/chemistry , Electrophoresis, Polyacrylamide Gel , Humans , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/genetics
17.
Parasitology ; 117 ( Pt 3): 249-53, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9774790

ABSTRACT

To test the homogeneity of 18S sequences within Trypanosoma cruzi, riboprint profiles were separated by temperature gradient gel electrophoresis (TGGE). Upon interpretation of melting curves of fragments within a riboprint profile, there appeared to be two 18S sequence types within each stock examined. Two similar types were also observed within outgroup taxa Trypanosoma conorhini, Trypanosoma rangeli and Leishmania braziliensis. From DNA hybridization studies, these fragments were shown to have homology to the 18S V1 region. There are therefore two 18S V1 regions, differing in sequence, present in all taxa examined. When only a single 18S sequence is used to represent each taxa for phylogenetic inference, comparisons may be between paralogous and not orthologous copies of this region, such that, inferred relationships may merely reflect a gene history. This seriously questions the current molecular phylogeny of these protozoa using 18S data.


Subject(s)
DNA, Ribosomal/chemistry , RNA, Ribosomal, 18S/chemistry , Trypanosoma cruzi/classification , Animals , DNA Restriction Enzymes/chemistry , DNA, Protozoan/chemistry , DNA, Single-Stranded/chemistry , Electrophoresis, Polyacrylamide Gel , Hot Temperature , Humans , Nucleic Acid Hybridization/genetics , Phylogeny , Polymerase Chain Reaction , Restriction Mapping , Trypanosoma cruzi/genetics
19.
J Med Entomol ; 35(1): 38-45, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9542343

ABSTRACT

Eleven of 27 decameric primers were found to be suitable for random amplification of polymorphic DNA (RAPD) from triatomine bugs on the basis that they produced discrete profiles and distinguished among Panstrongylus megistus (Burmeister), Rhodnius prolixus Stål, and Triatoma infestans (Klug). The legs, or single leg segments, of individual bugs were used as the source of DNA so that the taxonomic value of the bug was conserved. Within the scope of the specimens studied, RAPD profiles allowed assignment to species even when bugs were kept dry for up to 12 mo. Profiles for individuals within a species were not identical. RAPD profiles, with the specimens tested, distinguished among species of 3 pairs considered to be morphologically similar and closely related, namely, Rhodnius ecuadorensis Lent & León and Rhodnius pictipes Stål; Rhodnius nasutus Stål, and Rhodnius neglectus Lent; Rhodnius prolixus Stål and Rhodnius robustus Larrousse. RAPD data conformed with the perceived affinities among these species. RAPD polymorphisms were seen with T. infestans from 3 different localities, but none of the polymorphisms was confined to 1 source. RAPD provided a molecular basis to reassess taxonomic relationships within the Triatomine subfamily. The accurate distinction of triatomine species and of intraspecific bug populations may contribute to elimination of vector-borne Chagas disease from the Americas.


Subject(s)
Random Amplified Polymorphic DNA Technique , Triatominae/genetics , Animals , Triatominae/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...