Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genet ; 19(1): 49, 2018 07 30.
Article in English | MEDLINE | ID: mdl-30060732

ABSTRACT

BACKGROUND: Many common and relevant diseases affecting equine welfare have yet to be tested regarding structural variants such as copy number variations (CNVs). CNVs make up a substantial proportion of total genetic variability in populations of many species, resulting in more sequence differences between individuals than SNPs. Associations between CNVs and disease phenotypes have been established in several species, but equine CNV studies have been limited. Aim of this study was to identify CNVs and to perform a genome-wide association (GWA) study in Friesian horses to identify genomic loci associated with insect bite hypersensitivity (IBH), a common seasonal allergic dermatitis observed in many horse breeds worldwide. RESULTS: Genotypes were obtained using the Axiom® Equine Genotyping Array containing 670,796 SNPs. After quality control of genotypes, 15,041 CNVs and 5350 CNV regions (CNVRs) were identified in 222 Friesian horses. Coverage of the total genome by CNVRs was 11.2% with 49.2% of CNVRs containing genes. 58.0% of CNVRs were novel (i.e. so far only identified in Friesian horses). A SNP- and CNV-based GWA analysis was performed, where about half of the horses were affected by IBH. The SNP-based analysis showed a highly significant association between the MHC region on ECA20 and IBH in Friesian horses. Associations between the MHC region on ECA20 and IBH were also detected based on the CNV-based analysis. However, CNVs associated with IBH in Friesian horses were not often in close proximity to SNPs identified to be associated with IBH. CONCLUSIONS: CNVs were identified in a large sample of the Friesian horse population, thereby contributing to our knowledge on CNVs in horses and facilitating our understanding of the equine genome and its phenotypic expression. A clear association was identified between the MHC region on ECA20 and IBH in Friesian horses based on both SNP- and CNV-based GWA studies. These results imply that MHC contributes to IBH sensitivity in Friesian horses. Although subsequent analyses are needed for verification, nucleotide differences, as well as more complex structural variations like CNVs, seem to contribute to IBH sensitivity. IBH should be considered as a common disease with a complex genomic architecture.


Subject(s)
Horses/genetics , Hypersensitivity/veterinary , Insect Bites and Stings/veterinary , Animals , DNA Copy Number Variations , Genome-Wide Association Study/veterinary , Hypersensitivity/genetics , Insect Bites and Stings/genetics , Polymorphism, Single Nucleotide , Risk Factors
2.
PLoS One ; 11(4): e0152966, 2016.
Article in English | MEDLINE | ID: mdl-27070818

ABSTRACT

While susceptibility to hypersensitive reactions is a common problem amongst humans and animals alike, the population structure of certain animal species and breeds provides a more advantageous route to better understanding the biology underpinning these conditions. The current study uses Exmoor ponies, a highly inbred breed of horse known to frequently suffer from insect bite hypersensitivity, to identify genomic regions associated with a type I and type IV hypersensitive reaction. A total of 110 cases and 170 controls were genotyped on the 670K Axiom Equine Genotyping Array. Quality control resulted in 452,457 SNPs and 268 individuals being tested for association. Genome-wide association analyses were performed using the GenABEL package in R and resulted in the identification of two regions of interest on Chromosome 8. The first region contained the most significant SNP identified, which was located in an intron of the DCC netrin 1 receptor gene. The second region identified contained multiple top SNPs and encompassed the PIGN, KIAA1468, TNFRSF11A, ZCCHC2, and PHLPP1 genes. Although additional studies will be needed to validate the importance of these regions in horses and the relevance of these regions in other species, the knowledge gained from the current study has the potential to be a step forward in unraveling the complex nature of hypersensitive reactions.


Subject(s)
Horse Diseases/genetics , Hypersensitivity/veterinary , Insect Bites and Stings/veterinary , Animals , Female , Genes, DCC , Genome-Wide Association Study , Horse Diseases/immunology , Horses/genetics , Horses/immunology , Hypersensitivity/genetics , Hypersensitivity/immunology , Inbreeding , Insect Bites and Stings/genetics , Insect Bites and Stings/immunology , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , Risk Factors , Skin Diseases, Genetic/genetics , Skin Diseases, Genetic/immunology , Skin Diseases, Genetic/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...