Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JAC Antimicrob Resist ; 3(4): dlab168, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34806007

ABSTRACT

BACKGROUND: The protozoan Trypanosoma cruzi is auxotrophic for purines and causes Chagas' disease (CD), a neglected illness affecting >6 million people. Combining the 3-deoxyribofuranose part of cordycepin with the modified purine ring of a nucleoside 'hit' led to the discovery of 4-amino-5-(4-chlorophenyl)-N7-(3'-deoxy-ß-d-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (Cpd1), revealing promising anti-T. cruzi activity. OBJECTIVES: To further evaluate Cpd1 in vitro and in vivo to fully assess its therapeutic potential against CD, covering cell culture sterilization through washout assays, drug combination with benznidazole and long-term administration in T. cruzi-infected mice. RESULTS: Although less susceptible to Cpd1 than amastigotes, trypomastigotes present an impaired capacity to successfully establish intracellular infection of cardiac cultures. Combination of benznidazole with Cpd1 indicated no interaction (additive effect) (FIC index = 0.72) while administration to mice at one-tenth of the optimal dose (2.5 mg/kg and 10 mg/kg for Cpd1 and benznidazole, respectively) suppressed parasitaemia but failed to avoid mortality. Long-term treatment (60 days) gave a rapid drop of the parasitaemia (>98% decline) and 100% mice survival but only 16% cure. In vitro washout experiments demonstrated that although parasite release into the supernatant of infected cardiac cultures was reduced by >94%, parasite recrudescence did occur after treatment. CONCLUSIONS: Parasite recrudescence did occur after treatment corroborating the hypothesis of therapeutic failure due to subpopulations of dormant forms and/or genetic factors in persister parasites involved in natural drug resistance.

2.
Article in English | MEDLINE | ID: mdl-32601163

ABSTRACT

Pyrazolones are heterocyclic compounds with interesting biological properties. Some derivatives inhibit phosphodiesterases (PDEs) and thereby increase the cellular concentration of cyclic AMP (cAMP), which plays a vital role in the control of metabolism in eukaryotic cells, including the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease (CD), a major neglected tropical disease. In vitro phenotypic screening identified a 4-bromophenyl-dihydropyrazole dimer as an anti-T. cruzi hit and 17 novel pyrazolone analogues with variations on the phenyl ring were investigated in a panel of phenotypic laboratory models. Potent activity against the intracellular forms (Tulahuen and Y strains) was obtained with 50% effective concentration (EC50) values within the 0.17 to 3.3 µM range. Although most were not active against bloodstream trypomastigotes, an altered morphology and loss of infectivity were observed. Pretreatment of the mammalian host cells with pyrazolones did not interfere with infection and proliferation, showing that the drug activity was not the result of changes to host cell metabolism. The pyrazolone NPD-227 increased the intracellular cAMP levels and was able to sterilize T. cruzi-infected cell cultures. Thus, due to its high potency and selectivity in vitro, and its additive interaction with benznidazole (Bz), NPD-227 was next assessed in the acute mouse model. Oral dosing for 5 days of NPD-227 at 10 mg/kg + Bz at 10 mg/kg not only reduced parasitemia (>87%) but also protected against mortality (>83% survival), hence demonstrating superiority to the monotherapy schemes. These data support these pyrazolone molecules as potential novel therapeutic alternatives for Chagas disease.


Subject(s)
Chagas Disease , Nitroimidazoles , Pyrazolones , Trypanocidal Agents , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Mice , Nitroimidazoles/therapeutic use , Phosphodiesterase Inhibitors/therapeutic use , Pyrazolones/pharmacology , Pyrazolones/therapeutic use , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use
3.
Parasitology ; 146(8): 1055-1062, 2019 07.
Article in English | MEDLINE | ID: mdl-31046850

ABSTRACT

Levamisole (Lms) is an anthelminthic drug with immunomodulatory activity. Chagas disease (CD) is caused by Trypanosoma cruzi and there is very low access to the drugs available, benznidazole (Bz) and nifurtimox, both far from ideal. In a drug-repurposing strategy to test potential activity as antiparasitic and immunomodulatory agent for CD, Lms was assayed on acute T. cruzi murine infection, alone and in co-administration with Bz. During protocol standardization, 100 and 10 mpk of Bz given for five consecutive days resulted in parasitaemia suppression and 100% animal survival only with the highest dose. Flow cytometry showed that both optimal (100 mpk) and suboptimal (10 mpk) doses of Bz equally decreased the plasma levels of cytokines commonly elevated in this acute infection model. Lms alone (10-0.5 mpk) did not decrease parasitaemia nor mortality rates. Co-administration was investigated using the suboptimal dose of Bz and different doses of Lms. While Bz 10 mpk did not alter parasitaemia, the combo partially reduced it but only slightly promoted animal survival. This effect could be related to Th1-response modulation since interleukin-6 and interferon-γ were higher after treatment with the combo.


Subject(s)
Chagas Disease/drug therapy , Levamisole/pharmacology , Nitroimidazoles/pharmacology , Parasitemia/drug therapy , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Drug Therapy, Combination , Female , Male , Mice
4.
J Med Chem ; 61(20): 9287-9300, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30234983

ABSTRACT

Chagas disease is the leading cause of cardiac-related mortality in Latin American countries where it is endemic. Trypanosoma cruzi, the disease-causing pathogen, is unable to synthesize purines de novo, necessitating salvage of preformed host purines. Therefore, purine and purine-nucleoside analogues might constitute an attractive source for identifying antitrypanosomal hits. In this study, structural elements of two purine-nucleoside analogues (i.e., cordycepin and a recently discovered 7-substituted 7-deazaadenosine) led to the identification of novel nucleoside analogues with potent in vitro activity. The structure-activity relationships of substituents at C-7 were investigated, ultimately leading to the selection of compound 5, with a C-7 para-chlorophenyl group, for in vivo evaluation. This derivative showed complete suppression of T. cruzi Y-strain blood parasitemia when orally administered twice daily for 5 days at 25 mg/kg and was able to protect infected mice from parasite-induced mortality. However, sterile cure by immunosuppression could not be demonstrated.


Subject(s)
Drug Design , Purine Nucleosides/chemistry , Purines/chemistry , Purines/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Cell Line, Tumor , Humans , Models, Molecular , Molecular Conformation , Structure-Activity Relationship
5.
Article in English | MEDLINE | ID: mdl-30186314

ABSTRACT

BACKGROUND: Autologous whole blood (AWB) administration is described as alternative/complementary medical practice widely employed in medical and veterinary therapy against infections, chronic pathologies and neoplasias. Our aim is to investigate in vivo biological effect of AWB using healthy murine models under the course of Trypanosoma cruzi acute infection. METHODS: The first set of studies consisted of injecting different volumes of AWB and saline (SAL) into the posterior region of quadriceps muscle of healthy male Swiss mice under distinct therapeutic schemes evaluating: animal behavior, body and organ weight, hemogram, plasmatic biochemical markers for tissue damage and inflammatory cytokine levels and profile. To assess the impact on the experimental T. cruzi infection, different schemes (prior and post infection) and periods of AWB administration (from one up to 10 days) were conducted, also employing heterologous whole blood (HWB) and evaluating plasma cytokine profile. RESULTS: No major adverse events were observed in healthy AWB-treated mice, except gait impairment in animals that received three doses of 20 µL AWB in the same hind limb. AWB and SAL triggered an immediate polymorphonuclear response followed by mononuclear infiltrate. Although SAL triggered an inflammatory response, the kinetics and intensity of the histological profile and humoral mediator levels were different from AWB, the latter occurring earlier and more intensely with concomitant elevation of plasma IL-6. Inflammatory peak response of SAL, mainly composed of mononuclear cells with IL-10, was increased at 24 h. According to the mouse model of acute T. cruzi infection, only minor decreases (< 30%) in the parasitemia levels were produced by AWB and HWB given before and after infection, without protecting against mortality. Rises in IFN-gamma, TNF-alpha and IL-6 were detected at 9 dpi in all infected animals as compared to uninfected mice but only Bz displayed a statistically significant diminution (p = 0.02) in TNF-alpha levels than infected and untreated mice. CONCLUSIONS: This study revealed that the use of autologous whole blood (AWB) in the acute model employed was unable to reduce the parasitic load of infected mice, providing only a minor decrease in parasitemia levels (up to 30%) but without protecting against animal mortality. Further in vivo studies will be necessary to elucidate the effective impact of this procedure.

SELECTION OF CITATIONS
SEARCH DETAIL
...