Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 694757, 2021.
Article in English | MEDLINE | ID: mdl-34367095

ABSTRACT

Fatty acids of two mesophilic and one psychrotrophic strains of the foodborne pathogen Bacillus cereus were analyzed by gas chromatography coupled to mass spectrometry during growth at cold (10 and 12°C) vs. optimal (30°C) temperatures and during the whole growth process (6-7 sampling times) from lag to stationary phase. In all these strains, a sequential change of fatty acids during cold growth was observed. Fatty acids were modified as soon as the end of lag, with an increase of the short-chain fatty acids (less than 15 carbons), particularly i13. These short-chain fatty acids then reached a maximum at the beginning of growth and eventually decreased to their initial level, suggesting their importance as a rapid cold adaptation mechanism for B. cereus. In a second step, an increase in Δ5,10 di-saturated fatty acids and in monounsaturated fatty acids in Δ5 position, at the expense of unsaturation in Δ10, started during exponential phase and continued until the end of stationary phase, suggesting a role in growth consolidation and survival at cold temperatures. Among these unsaturated fatty acids, those produced by unsaturation of n16 increased in the three strains, whereas other unsaturated fatty acids increased in some strains only. This study highlights the importance of kinetic analysis of fatty acids during cold adaptation.

2.
Appl Environ Microbiol ; 85(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31076436

ABSTRACT

Bacterial adaptation is characterized by a lag phase during which cells do not multiply or modify their physiology to cope with the constraints of their environment. Our aim was to determine a sequence of events during the lag phase of growth at low temperature and pH for three Bacillus cereus strains. The onsets of expression of two genes, one of which is essential for stress adaptation (cshA, coding for a RNA helicase) and one of which is involved in the transition between lag phase and exponential phase (abrB, coding for a transition regulator), were determined using fluorescent transcriptional reporter systems. Regardless of the stressing conditions and the tested strains, the cshA promoter was active very early, while the biomass increased and always did so before the first cell division. At 12°C and pH 7.0, the onset of cshA promoter activity occurred at between 3 h and 7 h, while the bacterial counts started to increase at between 12 h and 13 h. At pH 5.0 and at 20°C or 30°C, the onset of cshA promoter activity occurred before 1 h and earlier than at pH 7.0. In contrast, the onset of abrB promoter activity depended on the strain and the stressing conditions. In the ATCC 14579 strain, the onset of abrB promoter activity always started at between 30 min and 3 h, before biomass increased and cell division occurred. For the other strains, it took place along with the first cell division at 12°C but did so much later during growth under the other tested conditions.IMPORTANCE The spore-forming bacterium B. cereus is a major cause of foodborne outbreaks in Europe. Some B. cereus strains can grow at low temperatures and low pH in many processed foods. Modeling of the bacterial lag time is hampered by a lack of knowledge of the timing of events occurring during this phase. In this context, the identification of lag phase markers, not currently available, could be a real advance for the better prediction of lag time duration. Currently, no molecular markers of this phase are available. By determining that cshA was always expressed early during the lag phase, we provide a molecular marker of the early adaptation process of B. cereus cells when exposed to low temperature and pH.


Subject(s)
Bacillus cereus/genetics , Bacterial Proteins/genetics , Gene Expression , Membrane Proteins/genetics , Adaptation, Physiological/genetics , Bacillus cereus/growth & development , Bacillus cereus/physiology , Bacterial Proteins/metabolism , Cold Temperature , Genetic Markers , Hydrogen-Ion Concentration , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...