Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.018
Filter
1.
Article in English | MEDLINE | ID: mdl-38811446

ABSTRACT

In many contexts, responsibility for exit-level assessment design and implementation in undergraduate medical programmes lies with individuals who convene clinical clerkships. Their assessment practice has significant consequences for students' learning and the patients and communities that graduates will serve. Interventions to enhance assessment must involve these assessors, yet little is known about factors influencing their assessment practice. The purpose of this study was to explore factors that influence assessment practice of clerkship convenors in three varied low-and-middle income contexts in the global South. Taking assessment practice as a behaviour, Health Behaviour Theory (HBT) was deployed as a theoretical framework to explore, describe and explain assessor behaviour. Thirty-one clinician-educators responsible for designing and implementing high-stakes clerkship assessment were interviewed in South Africa and Mexico. Interacting personal and contextual factors influencing clinician-educator assessment intention and action were identified. These included attitude, influenced by impact and response appraisal, and perceived self-efficacy; along with interpersonal, physical and organisational, and distal contextual factors. Personal competencies and conducive environments supported intention to action transition. While previous research has typically explored factors in isolation, the HBT framing enabled a systematic and coherent account of assessor behaviour. These findings add a particular contextual perspective to understanding assessment practice, yet also resonate with and extend existing work that predominantly emanates from high-income contexts in the global North. These findings provide a foundation for the planning of assessment change initiatives, such as targeted, multi-factorial faculty development.

2.
J Integr Neurosci ; 23(5): 92, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38812393

ABSTRACT

The evidence of brain-gut interconnections in Alzheimer's disease (AD) opens novel avenues for the treatment of a pathology for which no definitive treatment exists. Gut microbiota and bacterial translocation may produce peripheral inflammation and immune modulation, contributing to brain amyloidosis, neurodegeneration, and cognitive deficits in AD. The gut microbiota can be used as a potential therapeutic target in AD. In particular, photobiomodulation (PBM) can affect the interaction between the microbiota and the immune system, providing a potential explanation for its restorative properties in AD-associated dysbiosis. PBM is a safe, non-invasive, non-ionizing, and non-thermal therapy that uses red or near-infrared light to stimulate the cytochrome c oxidase (CCO, complex IV), the terminal enzyme of the mitochondrial electron transport chain, resulting in adenosine triphosphate synthesis. The association of the direct application of PBM to the head with an abscopal and a systemic treatment through simultaneous application to the abdomen provides an innovative therapeutic approach to AD by targeting various components of this highly complex pathology. As a hypothesis, PBM might have a significant role in the therapeutic options available for the treatment of AD.


Subject(s)
Alzheimer Disease , Brain-Gut Axis , Gastrointestinal Microbiome , Low-Level Light Therapy , Alzheimer Disease/radiotherapy , Alzheimer Disease/metabolism , Humans , Low-Level Light Therapy/methods , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/radiation effects , Brain-Gut Axis/physiology , Animals , Brain/metabolism , Brain/radiation effects
3.
Sci Rep ; 14(1): 10624, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724555

ABSTRACT

To date, the presence of pulmonary organs in the fossil record is extremely rare. Among extant vertebrates, lungs are described in actinopterygian polypterids and in all sarcopterygians, including coelacanths and lungfish. However, vasculature of pulmonary arteries has never been accurately identified neither in fossil nor extant coelacanths due to the paucity of fossil preservation of pulmonary organs and limitations of invasive studies in extant specimens. Here we present the first description of the pulmonary vasculature in both fossil and extant actinistian, a non-tetrapod sarcopterygian clade, contributing to a more in-depth discussion on the morphology of these structures and on the possible homology between vertebrate air-filled organs (lungs of sarcopterygians, lungs of actinopterygians, and gas bladders of actinopterygians).


Subject(s)
Biological Evolution , Fishes , Fossils , Pulmonary Artery , Animals , Pulmonary Artery/anatomy & histology , Fishes/anatomy & histology , Vertebrates/anatomy & histology , Lung/blood supply , Phylogeny
4.
Sensors (Basel) ; 24(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38610265

ABSTRACT

Light Sheet Fluorescence Microscopy (LSFM) has emerged as a valuable tool for neurobiologists, enabling the rapid and high-quality volumetric imaging of mice brains. However, inherent artifacts and distortions introduced during the imaging process necessitate careful enhancement of LSFM images for optimal 3D reconstructions. This work aims to correct images slice by slice before reconstructing 3D volumes. Our approach involves a three-step process: firstly, the implementation of a deblurring algorithm using the work of K. Becker; secondly, an automatic contrast enhancement; and thirdly, the development of a convolutional denoising auto-encoder featuring skip connections to effectively address noise introduced by contrast enhancement, particularly excelling in handling mixed Poisson-Gaussian noise. Additionally, we tackle the challenge of axial distortion in LSFM by introducing an approach based on an auto-encoder trained on bead calibration images. The proposed pipeline demonstrates a complete solution, presenting promising results that surpass existing methods in denoising LSFM images. These advancements hold potential to significantly improve the interpretation of biological data.

5.
High Alt Med Biol ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682358

ABSTRACT

Hermand, Eric, Léo Lesaint, Laura Denis, Jean-Paul Richalet, and François J. Lhuissier. A step test to evaluate the susceptibility to severe high-altitude illness in field conditions. High Alt Med Biol. 00:000-000, 2024.-A laboratory-based hypoxic exercise test, performed on a cycle ergometer, can be used to predict susceptibility to severe high-altitude illness (SHAI) through the calculation of a clinicophysiological SHAI score. Our objective was to design a field-condition test and compare its derived SHAI score and various physiological parameters, such as peripheral oxygen saturation (SpO2), and cardiac and ventilatory responses to hypoxia during exercise (HCRe and HVRe, respectively), to the laboratory test. A group of 43 healthy subjects (15 females and 28 males), with no prior experience at high altitude, performed a hypoxic cycle ergometer test (simulated altitude of 4,800 m) and step tests (20 cm high step) at 3,000, 4,000, and 4,800 m simulated altitudes. According to tested altitudes, differences were observed in O2 desaturation, heart rate, and minute ventilation (p < 0.001), whereas the computed HCRe and HVRe were not different (p = 0.075 and p = 0.203, respectively). From the linear relationships between the step test and SHAI scores, we defined a risk zone, allowing us to evaluate the risk of developing SHAI and take adequate preventive measures in field conditions, from the calculated step test score for the given altitude. The predictive value of this new field test remains to be validated in real high-altitude conditions.

6.
IUCrJ ; 11(Pt 3): 359-373, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639558

ABSTRACT

Metal-based complexes with their unique chemical properties, including multiple oxidation states, radio-nuclear capabilities and various coordination geometries yield value as potential pharmaceuticals. Understanding the interactions between metals and biological systems will prove key for site-specific coordination of new metal-based lead compounds. This study merges the concepts of target coordination with fragment-based drug methodologies, supported by varying the anomalous scattering of rhenium along with infrared spectroscopy, and has identified rhenium metal sites bound covalently with two amino acid types within the model protein. A time-based series of lysozyme-rhenium-imidazole (HEWL-Re-Imi) crystals was analysed systematically over a span of 38 weeks. The main rhenium covalent coordination is observed at His15, Asp101 and Asp119. Weak (i.e. noncovalent) interactions are observed at other aspartic, asparagine, proline, tyrosine and tryptophan side chains. Detailed bond distance comparisons, including precision estimates, are reported, utilizing the diffraction precision index supplemented with small-molecule data from the Cambridge Structural Database. Key findings include changes in the protein structure induced at the rhenium metal binding site, not observed in similar metal-free structures. The binding sites are typically found along the solvent-channel-accessible protein surface. The three primary covalent metal binding sites are consistent throughout the time series, whereas binding to neighbouring amino acid residues changes through the time series. Co-crystallization was used, consistently yielding crystals four days after setup. After crystal formation, soaking of the compound into the crystal over 38 weeks is continued and explains these structural adjustments. It is the covalent bond stability at the three sites, their proximity to the solvent channel and the movement of residues to accommodate the metal that are important, and may prove useful for future radiopharmaceutical development including target modification.


Subject(s)
Muramidase , Organometallic Compounds , Rhenium , Rhenium/chemistry , Muramidase/chemistry , Muramidase/metabolism , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Drug Development/methods , Crystallography, X-Ray , Binding Sites , Coordination Complexes/chemistry , Imidazoles/chemistry , Imidazoles/metabolism , Models, Molecular
7.
J Integr Neurosci ; 23(3): 57, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38538226

ABSTRACT

Recently, novel non-pharmacological interventions, such as photobiomodulation (PBM) therapy, have shown promise for the treatment of Alzheimer's disease (AD). This article outlines the translation from the preclinical to clinical stages of an innovative brain-gut PBM therapy in a mouse model of AD, a pilot clinical trial involving mild-to-moderate AD patients, and a continuing pivotal clinical trial with a similar patient population. In a mouse model of AD (Aß25-35), daily application of brain-gut PBM therapy to both the head and the abdomen produced a neuroprotective effect against the neurotoxic effects of an Aß25-35 peptide injection by normalizing all the modified behavioral and biochemical parameters. The pilot clinical trial to evaluate brain-gut PBM therapy demonstrated the tolerability and feasibility of the novel PBM-based treatment for mild-to-moderate AD patients. Compared to the sham patients, the PBM-treated patients had lower Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) comprehension sub-scores, higher forward verbal spans, and lower Trail Making Test (TMT) Part B (TMT-B) execution times, which suggest an improvement in cognitive functions. This pilot study provided important information for the design of a novel pivotal clinical trial, currently in progress, to assess the efficacy of brain-gut PBM therapy in a larger sample of AD patients. This pivotal clinical trial could demonstrate that brain-gut PBM therapy is a safe, well-tolerated, and efficient disease-modifying treatment for mild-to-moderate AD patients and that it has medical and economic benefits.


Subject(s)
Alzheimer Disease , Low-Level Light Therapy , Animals , Mice , Humans , Alzheimer Disease/radiotherapy , Alzheimer Disease/drug therapy , Pilot Projects , Brain , Cognition
8.
J Transl Med ; 22(1): 292, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504345

ABSTRACT

BACKGROUND: Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS: We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS: Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS: These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Microsatellite Instability , Neoplastic Syndromes, Hereditary , Humans , Animals , Macaca mulatta/genetics , Macaca mulatta/metabolism , MutL Protein Homolog 1/genetics , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , Colorectal Neoplasms/pathology , DNA Methylation/genetics , Epigenesis, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , DNA/metabolism , DNA Mismatch Repair/genetics
9.
Plant Genome ; 17(2): e20442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38481294

ABSTRACT

Ambrosia artemisiifolia and Ambrosia trifida (Asteraceae) are important pest species and the two greatest sources of aeroallergens globally. Here, we took advantage of a hybrid to simplify genome assembly and present chromosome-level assemblies for both species. These assemblies show high levels of completeness with Benchmarking Universal Single-Copy Ortholog (BUSCO) scores of 94.5% for A. artemisiifolia and 96.1% for A. trifida and long terminal repeat (LTR) Assembly Index values of 26.6 and 23.6, respectively. The genomes were annotated using RNA data identifying 41,642 genes in A. artemisiifolia and 50,203 in A. trifida. More than half of the genome is composed of repetitive elements, with 62% in A. artemisiifolia and 69% in A. trifida. Single copies of herbicide resistance-associated genes PPX2L, HPPD, and ALS were found, while two copies of the EPSPS gene were identified; this latter observation may reveal a possible mechanism of resistance to the herbicide glyphosate. Ten of the 12 main allergenicity genes were also localized, some forming clusters with several copies, especially in A. artemisiifolia. The evolution of genome structure has differed among these two species. The genome of A. trifida has undergone greater rearrangement, possibly the result of chromoplexy. In contrast, the genome of A. artemisiifolia retains a structure that makes the allotetraploidization of the most recent common ancestor of the Heliantheae Alliance the clearest feature of its genome. When compared to other Heliantheae Alliance species, this allowed us to reconstruct the common ancestor's karyotype-a key step for furthering of our understanding of the evolution and diversification of this economically and allergenically important group.


Subject(s)
Allergens , Ambrosia , Genome, Plant , Herbicide Resistance , Ambrosia/genetics , Allergens/genetics , Herbicide Resistance/genetics , Humans , Karyotype , Herbicides/pharmacology , Chromosomes, Plant
10.
Sci Rep ; 14(1): 436, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172520

ABSTRACT

Oocyte maturation is a key process during which the female germ cell undergoes resumption of meiosis and completes its preparation for embryonic development including cytoplasmic and epigenetic maturation. The cumulus cells directly surrounding the oocyte are involved in this process by transferring essential metabolites, such as pyruvate, to the oocyte. This process is controlled by cyclic adenosine monophosphate (cAMP)-dependent mechanisms recruited downstream of follicle-stimulating hormone (FSH) signaling in cumulus cells. As mitochondria have a critical but poorly understood contribution to this process, we defined the effects of FSH and high cAMP concentrations on mitochondrial dynamics and function in porcine cumulus cells. During in vitro maturation (IVM) of cumulus-oocyte complexes (COCs), we observed an FSH-dependent mitochondrial elongation shortly after stimulation that led to mitochondrial fragmentation 24 h later. Importantly, mitochondrial elongation was accompanied by decreased mitochondrial activity and a switch to glycolysis. During a pre-IVM culture step increasing intracellular cAMP, mitochondrial fragmentation was prevented. Altogether, the results demonstrate that FSH triggers rapid changes in mitochondrial structure and function in COCs involving cAMP.


Subject(s)
Cumulus Cells , Follicle Stimulating Hormone , Pregnancy , Swine , Female , Animals , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/metabolism , Cumulus Cells/metabolism , Oocytes/metabolism , Oogenesis , Follicle Stimulating Hormone, Human/metabolism , Mitochondria , Meiosis
11.
Nat Rev Cardiol ; 21(2): 75-88, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37783743

ABSTRACT

Oxygen is vital for cellular metabolism; therefore, the hypoxic conditions encountered at high altitude affect all physiological functions. Acute hypoxia activates the adrenergic system and induces tachycardia, whereas hypoxic pulmonary vasoconstriction increases pulmonary artery pressure. After a few days of exposure to low oxygen concentrations, the autonomic nervous system adapts and tachycardia decreases, thereby protecting the myocardium against high energy consumption. Permanent exposure to high altitude induces erythropoiesis, which if excessive can be deleterious and lead to chronic mountain sickness, often associated with pulmonary hypertension and heart failure. Genetic factors might account for the variable prevalence of chronic mountain sickness, depending on the population and geographical region. Cardiovascular adaptations to hypoxia provide a remarkable model of the regulation of oxygen availability at the cellular and systemic levels. Rapid exposure to high altitude can have adverse effects in patients with cardiovascular diseases. However, intermittent, moderate hypoxia might be useful in the management of some cardiovascular disorders, such as coronary heart disease and heart failure. The aim of this Review is to help physicians to understand the cardiovascular responses to hypoxia and to outline some recommendations that they can give to patients with cardiovascular disease who wish to travel to high-altitude destinations.


Subject(s)
Altitude Sickness , Cardiovascular Diseases , Heart Failure , Humans , Altitude , Cardiovascular Physiological Phenomena , Hypoxia , Cardiovascular Diseases/etiology , Oxygen , Heart Failure/etiology , Myocardium , Tachycardia
13.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38014094

ABSTRACT

HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of the anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirmed the latency reversal properties of in vivo TGF-ß blockade, decreased viral reservoirs and stimulated immune responses. Eight SIV-infected macaques on suppressive ART were treated with 4 2-week cycles of galunisertib. ART was discontinued 3 weeks after the last dose, and macaques euthanized 6 weeks after ART-interruption(ATI). One macaque did not rebound, while the remaining rebounded between week 2 and 6 post-ATI. Galunisertib led to viral reactivation as indicated by plasma viral load and immunoPET/CT with the 64Cu-DOTA-F(ab')2-p7D3-probe. Half to 1 Log decrease in cell-associated (CA-)SIV DNA was detected in lymph nodes, gut and PBMC, while intact pro-virus in PBMC decreased by 3-fold. No systemic increase in inflammatory cytokines was observed. High-dimensions cytometry, bulk and single-cell RNAseq revealed a shift toward an effector phenotype in T and NK cells. In summary, we demonstrated that galunisertib, a clinical stage TGFß inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.

14.
Sci Adv ; 9(43): eadj7611, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37878713

ABSTRACT

Respiratory syncytial virus (RSV) can lead to serious disease in infants, and no approved RSV vaccine is available for infants. This first in-human clinical trial evaluated a single dose of BLB201, a PIV5-vectored RSV vaccine administrated via intranasal route, for safety and immunogenicity in RSV-seropositive healthy adults (33 to 75 years old). No severe adverse events (SAEs) were reported. Solicited local and systemic AEs were reported by <50% of participants and were mostly mild in intensity. Vaccine virus shedding was detected in 17% of participants. Nasal RSV-specific immunoglobulin A responses were detected in 48%, the highest level observed in adults among all intranasal RSV vaccines evaluated in humans. RSV-neutralizing antibodies titers in serum rose ≥1.5-fold. Peripheral blood RSV F-specific CD4+ and CD8+ T cells increased from ≤0.06% at baseline to ≥0.26 and 0.4% after vaccination, respectively, in >93% participants. The safety and immunogenicity profile of BLB201 in RSV-seropositive adults supports the further clinical development of BLB201.


Subject(s)
Parainfluenza Virus 5 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Humans , Adult , Middle Aged , Aged , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Infections/prevention & control , CD8-Positive T-Lymphocytes , Antibodies, Viral , Viral Fusion Proteins
16.
iScience ; 26(7): 107180, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37534187

ABSTRACT

Mitochondria are multifaceted organelles crucial for cellular homeostasis that contain their own genome. Mitochondrial DNA (mtDNA) replication is a spatially regulated process essential for the maintenance of mitochondrial function, its defect causing mitochondrial diseases. mtDNA replication occurs at endoplasmic reticulum (ER)-mitochondria contact sites and is affected by mitochondrial dynamics: The absence of mitochondrial fusion is associated with mtDNA depletion whereas loss of mitochondrial fission causes the aggregation of mtDNA within abnormal structures termed mitobulbs. Here, we show that contact sites between mitochondria and ER sheets, the ER structure associated with protein synthesis, regulate mtDNA replication and distribution within mitochondrial networks. DRP1 loss or mutation leads to modified ER sheets and alters the interaction between ER sheets and mitochondria, disrupting RRBP1-SYNJ2BP interaction. Importantly, mtDNA distribution and replication were rescued by promoting ER sheets-mitochondria contact sites. Our work identifies the role of ER sheet-mitochondria contact sites in regulating mtDNA replication and distribution.

17.
Sci Transl Med ; 15(695): eadg7404, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37163615

ABSTRACT

The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that evade immunity elicited by vaccination has placed an imperative on the development of countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent monoclonal antibodies (mAbs) that neutralized multiple sarbecoviruses from macaques vaccinated with AS03-adjuvanted monovalent subunit vaccines. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells (MBCs) for at least 1 year after primary vaccination. Antibodies generated from these antigen-specific MBCs at 5 to 12 months after vaccination displayed greater potency and breadth relative to those identified at 1.4 months. Fifteen of the 338 (about 4.4%) antibodies isolated at 1.4 to 6 months after the primary vaccination showed potency against SARS-CoV-2 BA.1, despite the absence of serum BA.1 neutralization. 25F9 and 20A7 neutralized authentic clade 1 sarbecoviruses (SARS-CoV, WIV-1, SHC014, SARS-CoV-2 D614G, BA.1, and Pangolin-GD) and vesicular stomatitis virus-pseudotyped clade 3 sarbecoviruses (BtKY72 and PRD-0038). 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1, and XBB. Crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved sites within the RBD. Prophylactic protection of 25F9, 20A7, and 27A12 was confirmed in mice, and administration of 25F9 particularly provided complete protection against SARS-CoV-2, BA.1, SARS-CoV, and SHC014 challenge. These data underscore the extremely potent and broad activity of these mAbs against sarbecoviruses.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Mice , Broadly Neutralizing Antibodies , COVID-19 Vaccines , Macaca , SARS-CoV-2 , COVID-19/prevention & control , Immunization , Vaccination , Antibodies, Monoclonal , Antibodies, Viral , Antibodies, Neutralizing
18.
Nat Commun ; 14(1): 2149, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069151

ABSTRACT

While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ~one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly (or less frequent) booster vaccine, and as a primary vaccine for pediatric use including in infants.


Subject(s)
COVID-19 , Geranium , Nanoparticles , Animals , Humans , COVID-19 Vaccines , Ferritins , COVID-19/prevention & control , SARS-CoV-2 , Immune Sera , Primates , Antibodies, Neutralizing , Antibodies, Viral
19.
Interface Focus ; 13(2): 20220059, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36789236

ABSTRACT

Properties of microbial communities emerge from the interactions between microorganisms and between microorganisms and their environment. At the scale of the organisms, microbial interactions are multi-step processes that are initiated by cell-cell or cell-resource encounters. Quantification and rational design of microbial interactions thus require quantification of encounter rates. Encounter rates can often be quantified through encounter kernels-mathematical formulae that capture the dependence of encounter rates on cell phenotypes, such as cell size, shape, density or motility, and environmental conditions, such as turbulence intensity or viscosity. While encounter kernels have been studied for over a century, they are often not sufficiently considered in descriptions of microbial populations. Furthermore, formulae for kernels are known only in a small number of canonical encounter scenarios. Yet, encounter kernels can guide experimental efforts to control microbial interactions by elucidating how encounter rates depend on key phenotypic and environmental variables. Encounter kernels also provide physically grounded estimates for parameters that are used in ecological models of microbial populations. We illustrate this encounter-oriented perspective on microbial interactions by reviewing traditional and recently identified kernels describing encounters between microorganisms and between microorganisms and resources in aquatic systems.

20.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711543

ABSTRACT

The rapid emergence of SARS-CoV-2 variants that evade immunity to vaccination has placed a global health imperative on the development of therapeutic countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent pan-sarbecovirus antibodies from non-human primates vaccinated with an AS03 adjuvanted subunit vaccine against SARS-CoV-2 that recognize conserved epitopes in the receptor binding domain (RBD) with femtomolar affinities. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells for at least one year following primary vaccination. 514 monoclonal antibodies (mAbs) were generated from antigen-specific memory B cells. Antibodies isolated at 5 to 12 months following vaccination displayed greater potency and breadth, relative to those identified at 1.4 months. Notably, 15 out of 338 (∼4.4%) antibodies isolated at 1.4∼6 months after the primary vaccination showed extraordinary neutralization potency against SARS-CoV-2 omicron BA.1, despite the absence of BA.1 neutralization in serum. Two of them, 25F9 and 20A7, neutralized authentic clade Ia sarbecoviruses (SARS-CoV, WIV-1, SHC014) and clade Ib sarbecoviruses (SARS-CoV-2 D614G, SARS-CoV-2 BA.1, Pangolin-GD) with half-maximal inhibition concentrations of (0.85 ng/ml, 3 ng/ml, 6 ng/ml, 6 ng/ml, 42 ng/ml, 6 ng/ml) and (13 ng/ml, 2 ng/ml, 18 ng/ml, 9 ng/ml, 6 ng/ml, 345 ng/ml), respectively. Furthermore, 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants of concern and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1 and XBB variants. X-ray crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved RBD sites. In vivo prophylactic protection of 25F9, 20A7 and 27A12 was confirmed in aged Balb/c mice. Notably, administration of 25F9 provided complete protection against SARS-CoV-2, SARS-CoV-2 BA.1, SARS-CoV, and SHC014 challenge, underscoring that these mAbs are promising pan-sarbecovirus therapeutic antibodies. One Sentence Summary: Extremely potent pan-sarbecovirus neutralizing antibodies.

SELECTION OF CITATIONS
SEARCH DETAIL
...